Identifying Regional Patterns of Poverty in Indonesia: a Clustering Approach Using K-Means
Abstract
Poverty in Indonesia remains a major challenge, with significant levels of inequality between provinces. This study applies the K-Means clustering method to analyze poverty distribution patterns in 38 provinces in Indonesia, using data on the percentage of poor people from 2010 to 2024. With this approach, provinces are grouped into three main clusters: low, medium, and high, based on the average poverty rate. The low cluster includes areas with poverty rates below 10%, while the medium and high clusters indicate poverty levels that require more specific policies. The evaluation results show a silhouette score of 0.613, indicating that this grouping is quite good but can still be improved. This study offers important insights to support more targeted and effective policies, especially in achieving Sustainable Development Goal (SDG) 1: Eradicating Poverty.
Full Text:
PDFReferences
Amarasinghe, U., Samad, M., & Anputhas, M. (2020). Spatial clustering of rural poverty and food insecurity in Sri Lanka. Food Policy, 30(5–6), 493–509. https://doi.org/10.1016/j.foodpol.2005.09.006
Candra, Y., Goejantoro, R., & Dani, A. T. R. (2024). Pengelompokan Provinsi Berdasarkan Indikator Ekonomi, Pendidikan, Kesehatan, dan Kriminalitas di Indonesia Menggunakan Algoritma Centroid Linkage. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 12(1), 9–15. https://doi.org/10.37905/euler.v12i1.24887
Chadli, F. E., Gretete, D., & Moumen, A. (2022). Data Analysis within a Scientific Research Methodology. 148–153. https://doi.org/10.5220/0010730000003101
Chander, S., & Vijaya, P. (2021). Unsupervised learning methods for data clustering. In Artificial Intelligence in Data Mining (pp. 41–64). Elsevier. https://doi.org/10.1016/B978-0-12-820601-0.00002-1
Chaudhry, M., Shafi, I., Mahnoor, M., Vargas, D. L. R., Thompson, E. B., & Ashraf, I. (2023a). A Systematic Literature Review on Identifying Patterns Using Unsupervised Clustering Algorithms: A Data Mining Perspective. In Symmetry (Vol. 15, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/sym15091679
Chaudhry, M., Shafi, I., Mahnoor, M., Vargas, D. L. R., Thompson, E. B., & Ashraf, I. (2023b). A Systematic Literature Review on Identifying Patterns Using Unsupervised Clustering Algorithms: A Data Mining Perspective. In Symmetry (Vol. 15, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/sym15091679
Erda, G., Gunawan, C., & Erda, Z. (2023). GROUPING OF POVERTY IN INDONESIA USING K-MEANS WITH SILHOUETTE COEFFICIENT. Parameter: Journal of Statistics, 3(1), 1–6. https://doi.org/10.22487/27765660.2023.v3.i1.16435
Foell, A., & Pitzer, K. A. (2020). Geographically Targeted Place-Based Community Development Interventions: A Systematic Review and Examination of Studies’ Methodological Rigor. Housing Policy Debate, 30(5), 741–765. https://doi.org/10.1080/10511482.2020.1741421
Gonzalez, T. F. (2020). CLUSTERING TO MINIMIZE THE MAXIMUM INTERCLUSTER DISTANCE*. In Theoretical Computer Science (Vol. 38).
Hasan, E., Rahman, Md. A., Shojib Talukder, MD., Utsho, M. F., Shakhan, Md., & Farid, D. Md. (2023). Data Segmentation with Improved K-Means Clustering Algorithm. 2023 26th International Conference on Computer and Information Technology (ICCIT), 1–5. https://doi.org/10.1109/ICCIT60459.2023.10441078
He, Q., Chen, Z., Ji, K., Wang, L., Ma, K., Zhao, C., & Shi, Y. (2020). Cluster center initialization and outlier detection based on distance and density for the k-means algorithm. Advances in Intelligent Systems and Computing, 940, 530–539. https://doi.org/10.1007/978-3-030-16657-1_49
Hidayat, M. F., Wulandari, A., Hosea, H., Santoso Gunawan, A. A., & Permai, S. D. (2022). Analyzing Poverty Rate Using ANOVA in Indonesia. 2022 International Conference on Science and Technology (ICOSTECH), 1–4. https://doi.org/10.1109/ICOSTECH54296.2022.9829145
Irani, J., Pise, N., & Phatak, M. (2020). Clustering Techniques and the Similarity Measures used in Clustering: A Survey. In International Journal of Computer Applications (Vol. 134, Issue 7).
Islam, I., & Khan, H. (2020). Spatial patterns of inequality and poverty in indonesia. Bulletin of Indonesian Economic Studies, 22(2), 80–102. https://doi.org/10.1080/00074918612331334834
Kim, H., Kim, H. K., & Cho, S. (2020). Improving spherical k-means for document clustering: Fast initialization, sparse centroid projection, and efficient cluster labeling. Expert Systems with Applications, 150. https://doi.org/10.1016/j.eswa.2020.113288
Kliuchnyk, R. M. (2022). MAIN INTERPRETATIONS OF POVERTY IN ECONOMIC SCIENCE. Academic Review, 1(56), 14–23. https://doi.org/10.32342/2074-5354-2022-1-56-2
Kurniasari, A., & Oktavilia, S. (2023). Andini Kurniasari & Shanty Oktavillia. Economics Development Analysis Journal, 12(1). http://journal.unnes.ac.id/sju/index.php/edaj
Li, H., Rajbahadur, G. K., & Bezemer, C.-P. (2024). Studying the Impact of TensorFlow and PyTorch Bindings on Machine Learning Software Quality. ACM Transactions on Software Engineering and Methodology. https://doi.org/10.1145/3678168
Llerena-Izquierdo, J., Mendez-Reyes, J., Ayala-Carabajo, R., & Andrade-Martinez, C. (2024). Innovations in Introductory Programming Education: The Role of AI with Google Colab and Gemini. Education Sciences, 14(12), 1330. https://doi.org/10.3390/educsci14121330
Poerwanto, B. (2023). K-Means – Resilient Backpropagation Neural Network in Predicting Poverty Levels. Jurnal Varian, 6(2), 157–166. https://doi.org/10.30812/varian.v6i2.2756
Sano, A. V. D., & Nindito, H. (2020a). Application of K-Means Algorithm for Cluster Analysis on Poverty of Provinces in Indonesia. ComTech: Computer, Mathematics and Engineering Applications, 7(2), 141. https://doi.org/10.21512/comtech.v7i2.2254
Sano, A. V. D., & Nindito, H. (2020b). Application of K-Means Algorithm for Cluster Analysis on Poverty of Provinces in Indonesia. ComTech: Computer, Mathematics and Engineering Applications, 7(2), 141. https://doi.org/10.21512/comtech.v7i2.2254
Simon, G., Lee, J. A., & Verleysen, M. (2020). Unfolding preprocessing for meaningful time series clustering. Neural Networks, 19(6–7), 877–888. https://doi.org/10.1016/j.neunet.2006.05.020
Sumargo, B., & Haida, R. N. (2020). Linkages between Economic Growth, Poverty and Environmental Quality in Indonesia. Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi Dan Pembangunan, 21(1), 47–59. https://doi.org/10.23917/jep.v21i1.8262
Timpe, L. C. (2023). An online G oogle C olab project for exploring the SARS CoV ‐2 genome and mRNA vaccines. Biochemistry and Molecular Biology Education, 51(2), 209–211. https://doi.org/10.1002/bmb.21711
Vrahatis, M. N., Boutsinas, B., Alevizos, P., & Pavlides, G. (2020). The new k-windows algorithm for improving the k-means clustering algorithm. Journal of Complexity, 18(1), 375–391. https://doi.org/10.1006/jcom.2001.0633
Winkler, W. E. (2020). Methods for evaluating and creating data quality. Information Systems, 29(7), 531–550. https://doi.org/10.1016/j.is.2003.12.003
Yu, S. S., Chu, S. W., Wang, C. M., Chan, Y. K., & Chang, T. C. (2020). Two improved k-means algorithms. Applied Soft Computing Journal, 68, 747–755. https://doi.org/10.1016/j.asoc.2017.08.032
DOI: https://doi.org/10.29040/ijcis.v6i1.218
Article Metrics
Abstract view : 139 timesPDF - 53 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 4.0 International License
















