Identifying Regional Patterns of Poverty in Indonesia: a Clustering Approach Using K-Means

Sri Wahyuni, Agustia Hananto, Baenil Huda, Fitria Apriani, Tukino Tukino

Abstract


Poverty in Indonesia remains a major challenge, with significant levels of inequality between provinces. This study applies the K-Means clustering method to analyze poverty distribution patterns in 38 provinces in Indonesia, using data on the percentage of poor people from 2010 to 2024. With this approach, provinces are grouped into three main clusters: low, medium, and high, based on the average poverty rate. The low cluster includes areas with poverty rates below 10%, while the medium and high clusters indicate poverty levels that require more specific policies. The evaluation results show a silhouette score of 0.613, indicating that this grouping is quite good but can still be improved. This study offers important insights to support more targeted and effective policies, especially in achieving Sustainable Development Goal (SDG) 1: Eradicating Poverty.


Full Text:

PDF

References


Amarasinghe, U., Samad, M., & Anputhas, M. (2020). Spatial clustering of rural poverty and food insecurity in Sri Lanka. Food Policy, 30(5–6), 493–509. https://doi.org/10.1016/j.foodpol.2005.09.006

Candra, Y., Goejantoro, R., & Dani, A. T. R. (2024). Pengelompokan Provinsi Berdasarkan Indikator Ekonomi, Pendidikan, Kesehatan, dan Kriminalitas di Indonesia Menggunakan Algoritma Centroid Linkage. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 12(1), 9–15. https://doi.org/10.37905/euler.v12i1.24887

Chadli, F. E., Gretete, D., & Moumen, A. (2022). Data Analysis within a Scientific Research Methodology. 148–153. https://doi.org/10.5220/0010730000003101

Chander, S., & Vijaya, P. (2021). Unsupervised learning methods for data clustering. In Artificial Intelligence in Data Mining (pp. 41–64). Elsevier. https://doi.org/10.1016/B978-0-12-820601-0.00002-1

Chaudhry, M., Shafi, I., Mahnoor, M., Vargas, D. L. R., Thompson, E. B., & Ashraf, I. (2023a). A Systematic Literature Review on Identifying Patterns Using Unsupervised Clustering Algorithms: A Data Mining Perspective. In Symmetry (Vol. 15, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/sym15091679

Chaudhry, M., Shafi, I., Mahnoor, M., Vargas, D. L. R., Thompson, E. B., & Ashraf, I. (2023b). A Systematic Literature Review on Identifying Patterns Using Unsupervised Clustering Algorithms: A Data Mining Perspective. In Symmetry (Vol. 15, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/sym15091679

Erda, G., Gunawan, C., & Erda, Z. (2023). GROUPING OF POVERTY IN INDONESIA USING K-MEANS WITH SILHOUETTE COEFFICIENT. Parameter: Journal of Statistics, 3(1), 1–6. https://doi.org/10.22487/27765660.2023.v3.i1.16435

Foell, A., & Pitzer, K. A. (2020). Geographically Targeted Place-Based Community Development Interventions: A Systematic Review and Examination of Studies’ Methodological Rigor. Housing Policy Debate, 30(5), 741–765. https://doi.org/10.1080/10511482.2020.1741421

Gonzalez, T. F. (2020). CLUSTERING TO MINIMIZE THE MAXIMUM INTERCLUSTER DISTANCE*. In Theoretical Computer Science (Vol. 38).

Hasan, E., Rahman, Md. A., Shojib Talukder, MD., Utsho, M. F., Shakhan, Md., & Farid, D. Md. (2023). Data Segmentation with Improved K-Means Clustering Algorithm. 2023 26th International Conference on Computer and Information Technology (ICCIT), 1–5. https://doi.org/10.1109/ICCIT60459.2023.10441078

He, Q., Chen, Z., Ji, K., Wang, L., Ma, K., Zhao, C., & Shi, Y. (2020). Cluster center initialization and outlier detection based on distance and density for the k-means algorithm. Advances in Intelligent Systems and Computing, 940, 530–539. https://doi.org/10.1007/978-3-030-16657-1_49

Hidayat, M. F., Wulandari, A., Hosea, H., Santoso Gunawan, A. A., & Permai, S. D. (2022). Analyzing Poverty Rate Using ANOVA in Indonesia. 2022 International Conference on Science and Technology (ICOSTECH), 1–4. https://doi.org/10.1109/ICOSTECH54296.2022.9829145

Irani, J., Pise, N., & Phatak, M. (2020). Clustering Techniques and the Similarity Measures used in Clustering: A Survey. In International Journal of Computer Applications (Vol. 134, Issue 7).

Islam, I., & Khan, H. (2020). Spatial patterns of inequality and poverty in indonesia. Bulletin of Indonesian Economic Studies, 22(2), 80–102. https://doi.org/10.1080/00074918612331334834

Kim, H., Kim, H. K., & Cho, S. (2020). Improving spherical k-means for document clustering: Fast initialization, sparse centroid projection, and efficient cluster labeling. Expert Systems with Applications, 150. https://doi.org/10.1016/j.eswa.2020.113288

Kliuchnyk, R. M. (2022). MAIN INTERPRETATIONS OF POVERTY IN ECONOMIC SCIENCE. Academic Review, 1(56), 14–23. https://doi.org/10.32342/2074-5354-2022-1-56-2

Kurniasari, A., & Oktavilia, S. (2023). Andini Kurniasari & Shanty Oktavillia. Economics Development Analysis Journal, 12(1). http://journal.unnes.ac.id/sju/index.php/edaj

Li, H., Rajbahadur, G. K., & Bezemer, C.-P. (2024). Studying the Impact of TensorFlow and PyTorch Bindings on Machine Learning Software Quality. ACM Transactions on Software Engineering and Methodology. https://doi.org/10.1145/3678168

Llerena-Izquierdo, J., Mendez-Reyes, J., Ayala-Carabajo, R., & Andrade-Martinez, C. (2024). Innovations in Introductory Programming Education: The Role of AI with Google Colab and Gemini. Education Sciences, 14(12), 1330. https://doi.org/10.3390/educsci14121330

Poerwanto, B. (2023). K-Means – Resilient Backpropagation Neural Network in Predicting Poverty Levels. Jurnal Varian, 6(2), 157–166. https://doi.org/10.30812/varian.v6i2.2756

Sano, A. V. D., & Nindito, H. (2020a). Application of K-Means Algorithm for Cluster Analysis on Poverty of Provinces in Indonesia. ComTech: Computer, Mathematics and Engineering Applications, 7(2), 141. https://doi.org/10.21512/comtech.v7i2.2254

Sano, A. V. D., & Nindito, H. (2020b). Application of K-Means Algorithm for Cluster Analysis on Poverty of Provinces in Indonesia. ComTech: Computer, Mathematics and Engineering Applications, 7(2), 141. https://doi.org/10.21512/comtech.v7i2.2254

Simon, G., Lee, J. A., & Verleysen, M. (2020). Unfolding preprocessing for meaningful time series clustering. Neural Networks, 19(6–7), 877–888. https://doi.org/10.1016/j.neunet.2006.05.020

Sumargo, B., & Haida, R. N. (2020). Linkages between Economic Growth, Poverty and Environmental Quality in Indonesia. Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi Dan Pembangunan, 21(1), 47–59. https://doi.org/10.23917/jep.v21i1.8262

Timpe, L. C. (2023). An online G oogle C olab project for exploring the SARS CoV ‐2 genome and mRNA vaccines. Biochemistry and Molecular Biology Education, 51(2), 209–211. https://doi.org/10.1002/bmb.21711

Vrahatis, M. N., Boutsinas, B., Alevizos, P., & Pavlides, G. (2020). The new k-windows algorithm for improving the k-means clustering algorithm. Journal of Complexity, 18(1), 375–391. https://doi.org/10.1006/jcom.2001.0633

Winkler, W. E. (2020). Methods for evaluating and creating data quality. Information Systems, 29(7), 531–550. https://doi.org/10.1016/j.is.2003.12.003

Yu, S. S., Chu, S. W., Wang, C. M., Chan, Y. K., & Chang, T. C. (2020). Two improved k-means algorithms. Applied Soft Computing Journal, 68, 747–755. https://doi.org/10.1016/j.asoc.2017.08.032




DOI: https://doi.org/10.29040/ijcis.v6i1.218

Article Metrics

Abstract view : 139 times
PDF - 53 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License