STB Sentiment Analysis Classification Multiclass Modeling Using Calibrated Classifier With SGDC Tuning As Basis and Sigmoid Method

M. Hafidz Ariansyah, Sri Winarno, Abu Salam

Abstract


A set-top box (STB) is a device that converts digital signals into images and sounds that we can see on a regular analog television (TV). More and more people are looking for STB these days because the ordinary use of analog television (TV) will end in December 2022. The discontinuation of the normal use of analog television (TV) has generated a lot of positive, neutral, and negative sentiments. This sentiment data was obtained from social media Twitter using crawling data techniques. The feature extraction process in this study uses the TF-IDF method. In this study Stochastic Gradient Descent Classifier (SGDC) is used as a basis for determining the optimal method and comparing the SGDC tuning method with the Calibrated Classifier method. The test results show that the best optimization for this model is the Calibrated Classifier method with SGDC as its basis with an accuracy value of 80% on the test data and 100% on the training data. It shows that the Calibrated Classifier method can slightly improve the performance of testing and training on the SGDC Classifier has an accuracy value of 78.4% on the test data and 100% on the training data.


Full Text:

PDF

References


Kominfo (Kementrian Komunikasi dan Informatika Republik Indonesia), "Beralih ke Teknologi TV Digital, Apakah TV di Rumah Perlu Diganti?", 2022, https://www.kominfo.go.id/content/detail/34888/beralih-ke-teknologi-tv-digital-apakah-tv-di-rumah-perlu-diganti/0/tv_digital [Accessed in 15 Desember 2022].

Undang-undang Republik Indonesia nomor 11 tahun 2020 tentang Cipta Kerja. Jakarta: Kementerian Sekretariat Negara Republik Indonesia.

D. Darwis, N. Siskawati, and Z. Abidin, "Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional", Jurnal Tekno Kompak, vol.15, no.1, pp. 131-145, 2021, DOI : https://doi.org/10.33365/jtk.v15i1.744.

G. A. Ruz, P. A. Henríquez, and A. Mascareño, "Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers", Future Generation Computer Systems, vol.106, pp. 92-104, 2020, DOI : https://doi.org/10.1016/j.future.2020.01.005.

A. Sharma, and U. Ghose, "Sentimental analysis of twitter data with respect to general elections in India". Procedia Computer Science, vol.173, pp. 325-334, 2020, DOI : https://doi.org/10.1016/j.procs.2020.06.038.

S. M. Tambunan, Y. Nataliani, and E.S. Lestari, "Perbandingan Klasifikasi dengan Pendekatan Pembelajaran Mesin untuk Mengidentifikasi Tweet Hoaks di Media Sosial Twitter", JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol.7, no.2, pp. 112-120, 2021, DOI : http://dx.doi.org/10.26418/jp.v7i2.47232.

R. Dwiyansaputra, G. S. Nugraha, F. Bimantoro, and A. Aranta, "Deteksi SMS Spam Berbahasa Indonesia menggunakan TF-IDF dan Stochastic Gradient Descent Classifier", Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA), vol.3, no.2, pp. 200-207, 2021, DOI : https://doi.org/10.29303/jtika.v3i2.145.

A. K. Fauziyyah, "Analisis sentimen pandemi Covid19 pada streaming Twitter dengan text mining Python", Jurnal Ilmiah SINUS, vol. 18, no.2, pp. 31-42, 2020, DOI : http://dx.doi.org/10.30646/sinus.v18i2.491

S. Symeonidis, D. Effrosynidis, and A. Arampatzis, "A comparative evaluation of pre-processing techniques and their interactions for twitter sentiment analysis", Expert Systems with Applications, vol.110, pp. 298-310, 2018, DOI : https://doi.org/10.1016/j.eswa.2018.06.022.

N. Hafidz, and D. Y. Liliana, "Klasifikasi Sentimen pada Twitter Terhadap WHO Terkait Covid-19 Menggunakan SVM, N-Gram, PSO", Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol.5, no.2, pp. 213-219, 2021, DOI : https://doi.org/10.29207/resti.v5i2.2960.

A. Salam, J. Zeniarja, and R. S. U. Khasanah, "Analisis Sentimen Data Komentar Sosial Media Facebook Dengan k-Nearest Neighbor (Studi Kasus Pada Akun Jasa Ekspedisi Barang J&T Ekspress Indonesia)". Proceeding of SINTAK, pp. 480 - 486, 2018.

G. Mostafa, I. Ahmed, and M.S. Junayed, "Investigation of different machine learning algorithms to determine human sentiment using Twitter data", International Journal of Information Technology and Computer Science, vol.13, no.2, pp. 38-48, 2021, DOI : 10.5815/ijitcs.2021.02.04.

E. R. Kalaivani, and E. R. Marivendan, "The Effect of Stop Word Removal and Stemming In Datapreprocessing", Annals of the Romanian Society for Cell Biology, vol.25, no.6, pp. 739-746, 2021.

E. Mulyani, F. P. B. Muhamad, and K. A. Cahyanto, "Pengaruh N-Gram terhadap Klasifikasi Buku menggunakan Ekstraksi dan Seleksi Fitur pada Multinomial Naïve Bayes", Jurnal Media Informatika Budidarma, vol.5, no.1, pp. 264-272, 2021, DOI : http://dx.doi.org/10.30865/mib.v5i1.2672.

F. Z. Ruskanda, "Study on the effect of preprocessing methods for spam email detection", Indonesia Journal on Computing (Indo-JC), vol.4, no.1, pp. 109-118, 2019, DOI : https://doi.org/10.21108/INDOJC.2019.4.1.284.

A. Deolika, K. Kusrini, and E.T. Luthfi, "Analisis Pembobotan Kata Pada Klasifikasi Text Mining", (JurTI) Jurnal Teknologi Informasi, vol.3, no.2, pp. 179-184, 2019.

B. J. Sowmya, C. S. Nikhil Jain, S. Seema, and S. KG, "Fake News Detection using LSTM Neural Network Augmented with SGD Classifier", Solid State Technology, vol.63, no.6, pp. 6985-9665, 2020.

F. T. Admojo, and Y. I. Sulistya, "Analisis performa algoritma Stochastic Gradient Descent (SGD) dalam mengklasifikasi tahu berformalin", Indonesian Journal of Data and Science, 3(1), pp. 1-8, 2022, DOI : https://doi.org/10.56705/ijodas.v3i1.42.

A. Tuomo, J. Suutala, J. Röning, and H. Koskimäki, "Better classifier calibration for small datasets", ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 14, no.3, pp. 1-19, 2020, DOI : https://doi.org/10.1145/3385656.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, ... and E. Duchesnay, "Scikit-learn: Machine learning in Python", the Journal of Machine Learning research, vol.12, pp. 2825-2830, 2011.

J. Xu, Y. Zhang, and D. Miao, "Three-way confusion matrix for classification: A measure driven view". Information sciences, vol.507, pp. 772-794, 2020, DOI : https://doi.org/10.1016/j.ins.2019.06.064.J.




DOI: https://doi.org/10.29040/ijcis.v4i1.107

Article Metrics

Abstract view : 535 times
PDF - 263 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License