Decision Support System for Determining the Right Fertilizer for Coffee Plants Using the AHP Method

^{1st} Tri yusnanto, ^{2nd}Fatkhurrochman, ^{3th}Muhammad Abdul Muin ¹Informatic Management, ²Information System, ³Informatic Engineering ^{1, 2, 3}STMIK Bina Patria, Magelang, Indonesia ¹yusnanto@stmikbinapatria.ac.id, ²fathur@stmikbinapatria.ac.id, ³muin@stmikbinapatria.ac.id

Abstract—Coffee is one of the leading commodities in the plantation subsector in Indonesia. Padangan Hamlet is a hamlet located in Kandangan District, Temanggung Regency, with the majority of the community as coffee farmers. However, over time, coffee productivity has decreased and a strategy is needed to increase coffee productivity. To improve the quality of good coffee, special knowledge is needed regarding fertilization of coffee plants. Determining the right fertilizer for coffee farmers is an important problem because it can affect the crop yield. In providing solutions related to this problem, this study developed a decision support system for determining the right fertilizer for coffee plants using the AHP method. The system was developed using the waterfall process model with PHP and MySQL programming languages based on the Codeigniter framework. The system was tested for functionality and validity. In addition, the system was also evaluated and a feasibility study was carried out on the system against 8 respondents consisting of members of the farmer group. The results showed that the percentage value was 81.852% which indicated that the system was categorized as very feasible. Keyword : Analytical Hierarchy Process, Codeigniter, Coffee, Decision Support System, Temanggung

I. INTRODUCTION

Coffee is one of the leading commodities in the plantation sub-sector in Indonesia [1]. This is because coffee has good market opportunities both domestically and abroad. Most of the coffee production in Indonesia is a plantation commodity that is sold to the world market. [2]. According to the International Coffee Organization (ICO), coffee consumption increases from year to year, so that increasing coffee production in Indonesia has a great opportunity to export coffee to major coffee consuming countries in the world such as the European Union, the United States and Japan. Temanggung Regency as one of the centers of coffee producing areas, with the highest production level number one in Central Java [3]. In 2022, coffee production in Temanggung reached 11,126 tons.

Padangan Hamlet is a hamlet located in Kandangan District, Temanggung Regency, with a mountainous geography and the majority of the community works as coffee farmers. However, over time, coffee productivity in Padangan Hamlet has decreased and a strategy is needed to increase coffee productivity. To improve the quality of good coffee, special knowledge is needed regarding fertilization of coffee plants. [4]. Plant fertilization aims to add nutrients that are not present or available in the soil that plants need for vegetative and reproductive growth in order to obtain quality fruit mass.[5]. Determining the right fertilizer for coffee farmers in Temanggung is an important problem because it can affect the crop yield. The problem experienced is that the selection of fertilizers in the Temanggung area is still less effective. Because in the selection of fertilizers, farmers get data from the Temanggung Agriculture Service to get recommendations for the best types of fertilizers with valid data. Therefore, all factors that influence sustainable agricultural development, both supporting factors and limiting factors, must be considered from the start, starting from determining the best fertilizer for coffee plants which is poured into an application that can be one of the strategic solutions to increase coffee production in Padangan Hamlet.

Previous research related to this research with the title of developing a fertilizer type recommendation system for oil palm plants using the AHP (analytical hierarchy process) method, by: As-Siddiqi, M., H., et al. 2022. The purpose of this study is to create a recommendation system using the analytical hierarchy process (AHP) algorithm method. The variables used are 3 criteria (soil type, plant age and water content) with 3 fertilizer alternatives (urea, KCL and ZA). The results of this study are a web-based palm oil fertilizer recommendation system with Black Box testing. In the results of testing the manual AHP calculation method in Microsoft Excel with AHP Calculation in the System, the average value obtained from the calculation is below 1, which means that the consistency value of the calculation can be used with organic fertilizer as the best fertilizer choice. However, in this study there is no calculation report section that can display the results of the best fertilizer in the form of a report [6].

Research on the selection of effective fertilizers for shallot cultivation in Demak Regency, by Mahendra, A., & Saefurrohman, S., 2022. The purpose of this study was to create a decision support system in fertilizer application by combining the analytical Hierarchy Process (AHP) method and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The advantage of this study is that it uses a hybrid method between AHP and TOPSIS. However, in variable processing, TOPSIS is only used in the ranking system from the results of the AHP calculation process. The variables in this study use 5 variables (Soil Type, Age, Temperature and Soil Ph) with 5 alternatives (Npk MuBara, Kcl, Urea, Sp-36 and ZA) The results of this study are recommendations for effective fertilizers for shallot cultivation in Demak Regency, namely Npk Mutiara 16:16:16 fertilizer and ZA fertilizer [7].

Decision support system for determining the best coffee land using the AHP (analytical hierarchy process) method by Rahmatullah, S., & Abdurahman, R., 2020. The purpose of this study is to facilitate the people of Gunung Kidul Village in determining the best coffee land so that they can increase the amount of coffee production. The results of this study are the determination of the best coffee land with several variables used, namely organic elements, soil minerals, water sources, land slopes, and previous plants. The disadvantage of this study is that it still uses the Borland Delphi 7 programming language with the Microsoft Access database. This still causes difficulties in reporting and analyzing continuous data [8].

From the problems above, this study will design a fertilizer recommendation system so that farmers can find out the right type of fertilizer for web coffee plants with the Analytical Hierarchy Process (AHP) method in providing fertilizer recommendations for coffee plants. So that with this application it is expected to help coconut coffee farmers in choosing the type of fertilizer that will be used later.

II. RESEARCH METHODS

The research methods used in this stage are as follows:

1. Data Collection Method

This method is used in the process of collecting data using various sources. In the process of collecting data using the following methods:

a. Interview

At this stage, the researcher conducted a direct interview with the leader of the Padangan Hamlet farmer group who was directly related to the case study being conducted in the research.

b. Observation

Direct observation of the research object in order to obtain systematic data on the matters being studied.

- c. Literature Study Direct observation of the research object in order to obtain systematic data on the matters being studied.
- 2. System Development Methods
 - a. Data Analysis
 - b. System Design
 - c. System Design
 - d. System Implementation
 - e. System Testing
- 3. Research Flow

This research flow is carried out following the following stages:

- a. Literature study sourced from research results such as journals, proceedings, literature studies aim to analysis problems, formulate backgrounds, state of the art and theoretical basis.
- b. Data Collection Analysis: Collection and Analysis of Agricultural Data, Plants, Fertilizers and Important Variables
- c. System Design: At this stage, what will be designed includes: Use Case Diagram, Hierarchy Input Process Output (HIPO) and Class Diagram.
- d. System Design: At this stage, what will be designed includes input design, output design, technology design and database design.
- e. System Implementation: At this stage, the creation of the entire application program begins with the PHP programming language and MySQL Database
- f. System Testing: At this stage, the System Testing utilizes the Blackbox and Validity methods.
- g. System Evaluation and Feasibility Study: Measuring the Effectiveness of System Feasibility.
- h. Mandatory Reporting and Output: Preparing research reports and publications

To further clarify the flow of this research, it can be seen in Figure 1.

Figure 1. Research Flow

III. RESULT AND ANALYSIS

The results and analysis in this study discuss the data analysis process, implementation of the AHP algorithm, system testing and evaluation and feasibility study of the system in determining the right fertilizer for coffee plants.

3.1 Data Analysis

In the process of Data Analysis, data identification, data selection, data grouping, data selection and data sets are carried out[9]. So that alternatives and criteria are obtained as an important part in the implementation of the required system. Criteria data is used as a reference/basis for the assessment. In the criteria, the criteria code and criteria name can be adjusted according to the needs of the system. The criteria data is presented in table 1.

	Table 1. Criteria Data									
No	Code	Criteria Name								
1	K1	Plant Age								
2	K2	Land Area								
3	K3	Soil pH								
4	K4	Soil Slope								
5	K5	Water Content								

In determining the importance and priority level of each criterion, a basic scale of paired comparisons can be used, as presented in Table 2.

Table 2. Basic scale of paired comparisons

No	Intensity of Interest	Information
1	1	Both Elements Are Equally Important
2	3	One element is slightly more important than the other
3	5	One element is more important than the other
4	7	One element is clearly more absolutely important than the other
5	9	One element is absolutely important than the other
6	2, 4, 6, 8	Values between two adjacent considerations
7	Reciprocal	If element one has one of the above values compared to element j, then j has the opposite value when compared to element i

Next, alternative data is something/someone who will be assessed. Alternatives contain alternative codes and alternative names according to the results that are the goal of the system.

	Table 3. Alternative Data										
No	code	Criteria Name									
1	A1	Urea									
2	A 2	KCL									
3	A 3	ZA									
4	A 4	Kieserit									

Based on the criteria and alternative data, a problem definition is carried out in achieving the goal. In carrying out the problem definition, it is done by determining the relation or relationship in the criteria and alternatives in achieving the goal. In carrying out the problem definition, it is presented in Figure 2 below.

Figure 2. Problem definition

3.2System Design

In the system design stage, it is useful to provide an overview of the process of system implementation. In this stage, a flowchart of the AHP method process is presented in Figure 2, a flowchart of determining the type of fertilizer is presented in Figure 3 and a flowchart of the decision support system for determining fertilizer is presented in Figure 4.

Figure 3. Flowchart of AHP Method

In the first process of the AHP method flowchart, the data input process will be carried out from the priority scale of the criteria. Then a pairwise comparison matrix is made from the existing criteria. After that, the matrix normalization process is carried out. From these results, calculations are then carried out for the criteria weight values, after which the consistency value is calculated. If the consistency value is less than 0.1, the AHP process will be repeated from the beginning, if it is more than 0.1, the criteria weight that is suitable for use is obtained.

Figure 4. Flowchart for Determining the Right Fertilizer for Coffee Plants

The first thing to do is to add criteria and alternative data and determine the weight of each criterion and alternative that has been added. Then a pairwise comparison matrix is created and the priority value is calculated to check whether the weight value of the criteria can be used. Likewise with alternatives, a pairwise comparison matrix is performed and the priority value is calculated to check whether the weight value of the alternative can be used. Finally, the final calculation is carried out to obtain the results and ranking of the best fertilizer types.

Figure 5. Flowchart of SPK Fertilizer Determination

First, the user is directed to the main page of the website. Then enter the login page and enter the username and password. If it does not match, it will return to the website login page, if correct, the system will check whether the user has admin access or not. If admin, it will enter the admin page, if not, it will enter the non-admin page. Users can select the AHP menu to carry out the AHP process in determining the right fertilizer for coffee plants.

3.3System Design

The developed system carries the concept of OOP (Object-Oriented Programming). OOP itself is a programming method that is oriented towards objects where there are classes and objects that interact with each other so that a program can be created [10]. So that in visual modeling the system uses UML (Unified Modeling Language). UML can be interpreted as a standard language for visualization, design, and documentation of systems, or a standard language for writing blueprints for software [11]. In this study, it will provide a visualization of the system including use case diagrams and class diagrams. Use case diagrams describe the interaction between the system and the actor and can describe the type of interaction between system users and their systems [12]. While the class diagram is a diagram used to display classes in the form of packages to meet one of the needs of the package that will be used later.

The use case diagram of the decision support system for determining the right fertilizer for coffee plants using the AHP method is presented in Figure 5.

Figure 6 Use Case Diagram of Decision Support System for Fertilizer Determination

In the developed system, there are 2 levels of users, namely users as admins and non-admin users. Where each user has features according to the level they have.

3.4System Implementation

The implementation stage of the system of the decision support system for determining the right fertilizer for coffee plants, this is the most important part in the innovation of system development. The process stages in the implementation of the system are as follows:

1. System Home Page

The system home page can be seen in the following image the show figure 7.

Figure 7. System home page

Next, to start this system, the user will be asked to log in to the system as shown in the following image.

Beranda Kriteria Alternatif Kontak	
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
LOGIN patilian username dan password yang dimasukan sesuai	
usemame	
password	
LCON SACAL	
	Determinal Retrinal Retrinal

Figure 8. System Login Page

2. Criteria Management Page

On the criteria management page, users can set the criteria used in determining the right fertilizer for coffee plants. The page is presented in the following figure.

Sistem Pendukung Keputusan Menggunakan Metode AHP									
	Kriteria								
	• Tantah								
	No NamaKriteria								
Perbandingan Kriteria	1 Umur Tanaman	10 BOT N DRAT							
	A 1								
	2 Los unas	2 60 X 000							
	3 Philash	17 601 × 01121							
	A Kunisiana Jané	7 MT + 0317							
Kadar Air	5 Kadar Ar	100 × 000 × 000							
		Largist							

Figure 9. Criteria Management Page

3. Alternative Management Page

The alternative management page is intended for users to determine alternative destinations. The page is presented in the following image.

Figure 10. Alternative Management Page

4. Criteria Comparison Form Page

The criteria comparison page is used to determine the weight of each criterion based on the level of importance according to needs. The results of the comparison process will then be presented in the following figure.

Matchin Ports and rep	a de carciegas									
Kiteria	Una bona	Lawlater	Philan	Keeringen Tarah	Kadar Air					
Hear Decrets		2	5	4	5					
Institution	1.10.810	1		5	2					
Fallents	82	0.33363	5	8	0.0036					
Kaniringso Tanah	0.16567	0.2	0.30330	1	65					
Factor Air	62	6.5	3	2	1					
June 1										
Hazika Nini Krisela Kritaria		Unar Tar	222204	1/	and the	Prilaus	Keniti pri Tauh	Tadar Ar	Amin	Marto Vatar
Hazika Misi Krisela Krisela Unur Tananan		Unar Tar	123304	1/	8303.0	Patanah	Kenikhan Tesh	Eader Air E 34014	3.min 246/3	Marto Vatar
Herionial Oten Educa Unar Income Local Arm		5.0003 Unar bio 0.0282 0.17244	123304	1/ Lase 0.5%	22030	Philauka 0.40913 0.24234	Kenirir pri Tarah 0.3204 0.3453	Koder Air Koder Air Koder I	24803 13354	Plata Vadar Genes Gasta
Herborialities Reals Desclores Lociales Falles		5.0003 Unar bri 01244 01255	123304	17 500 034 034 034	830330 Lahun 00 64 22	Priluon 0.40513 0.20204 0.20204	Rentifyon Teuh 0.350% 0.3562	Koder AP Koder AP Koder AP Koder AP Koder AP	244073 115258 046073	Priorito Vadar 0.48909 0.55726 0.05226
Hardo Nalikited Kitela Unor Incono Incontere Fallmah Kanisten Inak		Unar br 032922 032922 032925 032925 032925 032925	13304	17 534 034 036 066 066	810330 ahun 03 68 62 74	Pribush 0.009/1 0.0010 0.0010 0.0010	Nanishgan Sunish 0.00024 0.00407 0.00407 0.00407	Radar Air 8:55054 8:02074 8:02074 8:02056	Amin 2440/3 132384 046073 620752	Priorite Visitar 0.489708 0.557748 0.05224 0.05226
Herboltal Diset Kitaria Dirar Internet Interlation Fallmah Kanisingan Intel Katar An		Unar ba 012962 012564 012564 012565 006772 01208	13304	1/ 0.54 0.54 0.00 0.00 0.00 0.00 0.00	23 24 24 25 25 26 26 26 26 27 26 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	Philosoft 0.00040 0.00100 0.00100 0.00100 0.00200 0.00200	Next in pr. Smith 02004 02040 02047 02062 02042	Radar Air 8.55654 8.020442 8.02074 8.02074 8.02074 8.02074	Amin 24403 15339 64633 62095 6500	Priorito Vastor 1.48920 1.00230 1.00230 1.00239 1.13337
Hereis National Kitada Unar Isaana Isaatahan Palbada Kaningan Isada Radar An Findan Egerined	try or (5-west)	Unur Tan 032822 017244 010155 008772 010108	13304	17 534 635 636 646 646 646 646 646 646 646 646 646	23 24 24 25 25 26 26 26 26 27 26 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	Prilowith 0.00503 0.00104 0.00104 0.00104 0.00104 0.00104	Next is pa Smith 0.0004 0.33443 0.33443 0.33443 0.33443 0.33443 0.33442 0.03047 0.03042 0.03042	Eador Air 6:550181 6:02074 6:02074 6:0205 6:0205 6:01021	Amin 24403 11239 64673 62895 68797	Priorito Viador 4.48951 4.59254 4.09224 4.09294 4.09294 4.09294 4.09294
Herein Ministerie Riese Innersen Insections Prillerie Renistryer Benk Renistryer Benk Riese An Frinziger Right Weit Consistency Index	or@next	0000 017544 03202 017544 03202 03202 03202	13304	17 534 035 046 046 046 046	10020 Labor 48 22 114	Pitash 0.000 0.000 0.000 0.000 0.000 0.000	Nenirk par Tarah 0.01094 0.01094 0.01097 0.01097 0.0002 0.01098	Kader Ale 635684 635682 63564 63566 63566 63587	246/3 246/3 13284 646/2 63295 63295	Priorito Viador 4.48901 4.59258 4.09226 4.09298 4.135918 5.58208 4.00560

Figure 11. Pairwise Comparison Criteria Page

5. Alternative Comparison Form Page

On the alternative form page, users can determine the importance weight value of each alternative against the criteria based on needs. The results of the alternative comparison process against the plant age criteria are presented in the following figure.

	Mathaba	disedingon)	ile carcongo	•						
	Kiteta	Una	HCL	24	Keat					
alian 🚺	ike.		2	3	3					
	10.	0.5	1	4	3					
nantinga-Veteria	24	0.14266	035		025					
	Keet	0.10010	023333	4	1					
	ante	1,0762	325332	25	7.25					
an Lafran										
i taran										
ulu Ab	-	a forbera								
	Kiteta			Une		HQL	24	Keent	Address of the second	Priority Vector
	Bec.			0.92	80	0.59814	64605	0.4529	191604	0.6586
	H3.			0.25	8/1	0.27907	125	0.6279	319967	029857
	28			0.67	209	0.54977	0.0425	0.534.42	0.25834	0.59298
	Keet			0.16	807	92022	125	0.12793	6.94960	0.01241
	Finder	See Vector	9.miol							433124
	Desite	ada teles								0.19042
	Consider	and the local								54%

Figure 12. Alternative Comparison Page for Plant Age

The results of the alternative comparison process for land area criteria are presented in the following figure.

	Matalan Poe	tradings	a literation	ngan .											
•	Kiteria	Una	HCL 3	5A	Kenrk										
	18m		as a	:26	2										
÷	913.	2	1.0	0.018	2										
	28	4	8.1		6										
	Keett	35	65 0	12	1										
	Juntili	7.5	5 2	76330	10										
	MahaNi	600mi													
	Riteria				148	121	ZA	Kloort	Junia .	Priority/linear					
	ikse.				1100	44	0.54009	4.2	46792	11128					
					2367	42	0.38642	4.2	600338	82134					
	28.				53033	-0.4	0.56075	4.5	319436	0.54830					
	Keet				0667	4.1	0.11215	4.1	0.37836	62947					
							4.00750								
I	Frindja 2	ique Vect			Lundranes I wine										
	Frindja D	igar Ved Istala								002532					

Figure 13. Alternative Comparison Page for Land Area

The results of the alternative comparison process for Soil Ph criteria are presented in the following figure.

	No.	iin.	-		Sector					
	Postana -		-	-						
	inc.		-	10						
	10.	92	1	1007.0	65					
nta roali	28	4		5	2					
	Kasett	2	2	65	1					
	Junio	7.5	0	208330	4					
	Holinia	614/10rd								
	Kiteria				110	HOL.	Z4	Klasertz	Junioh	Priority Wester
	Kiteria Bico				0.1200	N2L 0.25	2A 0.12	Kleerk 115	Lanish L KiKiki	Prints Weber 0.11208
	Kitaria Bios Hitt				0.12000 0.12000	NOL 0.05	24 032 039	Anort 115 115	LANKE LANKE	Priorby Wester 0.11208 0.11210
	Kitaria Bito Bito 28				4.1200 4.1200 4.1800	625 035 0325	24 012 035 044	4.05 4.05 4.0 4.0	24/68 2.4/687 2.4/687 1.4/687	Priorito Wester 0.312/06 0.31910 0.62206
	Kitaria Bino Bill. 28 Kitarit				4.1203 4.1203 4.1203 4.1203 4.1203 4.1203	NDL 0.05 0.05 0.075 0.025	ZA 013 039 048 024	105 105 109 16 125	24988 249867 149802 100667	Printly Water 0.117/06 0.12700 0.02000 0.25127
	Riters Hos 28 Reart Findes	40.00	tor D. new		41203 41203 41805 41805 41805 41805	NDL 0.05 0.05 0.05 0.05	ZA 032 038 048 024	Kaset 105 105 15 15 125	3464	Photo Netar 0.11708 0.11702 0.0286 0.02162 4.1116
	Riteria Bito Bita Bita Bita Bita Bita Bita Bita Bita	lgar Ma	tor 9. next	1 1 1	4.1203 4.1203 4.0847 4.5858 4.2647	NOL 0.05 0.05 0.055	ZA 0.53 0.68 0.54	Kaark 105 105 15 125	34494 0.41682 0.41667 1.86830 1.00667	Photo Sutar 0.1370# 0.03900 0.02502 0.02502 4.1102 0.5554

Figure 14. Alternative Comparison Page for Soil Ph

	trades Portice	deque ite	()arcing	an .						
	Kiteta U	-	HCL	24	Keert					
	iko 1		8	65	035					
	HL 4	19.819	t	0.0.00	025					
taria	24. 2		8	5	033333					
enal!	Reart 4		4	3	1					
	Junten 2.	10010	18	402304	1.83133					
-	walka Milako	nea.								
	Kiteria			Una		×C.	24.	Koent	Junioh	Pelle rity Vector
	iks:			0.1565	4	632523	0.0246	ECC263A	0.4499	618628
	H1.			0.0454	3	0.24591	0.06917	EC966	034569	0.588-62
	24			0.1930	8	632523	0.0549	619892	195917	0.3354
	Kaserit			0.5454	5	036264	2.42009	654545	2.07524	0.51.634
	Frincipa Cilgue	Wedor 9	rankal							4.30%25
	Carolstone 1	alex.								039475

Figure 15. Alternative Comparison Page for Land Slope

The results of the alternative comparison process for water content criteria are presented in the following figure.

Figure 16. Page Comparison of Alternatives to Water Content

6. Recommendation Results Page

The system recommendation page shows the results of the appropriate fertilizer recommendation process for coffee plants. The recommendation results page is shown in the following image.

Had Perkin							
1.0	angan						
Orwall Cares	enholidghe		Priority/Networisto-colo	Una	HTL.	ZA	Cased
Berlere			549805	0.62946	1.5867	0.0975	0.9676
Losiatos			0.22550	0.04330	0.283H	0.54012	0,2147
Pr3mb			001336	0.35730	0.13917	0.47208	0,2314
Resingente	ah -		205396	0.34275	2/89/2	0.23354	03:28
Relative			012874	02407	0.19785	0.40047	0,330
204				0.82255	0.127706	0.2719	0.510
Prime 2 3 4	Una 2A NU. Kowit	0223825 0273899 023-082 03507010					

Figure 17. System recommendation results page

3.5 System Testing

The System Testing Process is carried out in two stages of testing, namely Functional Testing and Validity Testing.

1. Functionality Testing

Functionality Testing is a test on the features owned by an application system [13]. This aims to determine whether the features or services in the application have run properly [14]. Testing is carried out on all available system features including true and false test scenarios. Based on the results of the functionality testing that has been carried out, it shows that the application has run well because all test scenarios obtained acceptable results, so the system is declared normal.

2. Validity Testing

Validity Testing is a system testing process by comparing the results of manual algorithm calculations with the results of the application system [15]. The following are the stages in the validity test of the system being developed.

- a. Comparative Value
 - 1) Calculation of priority weight of criteria In calculating the priority weight of criteria, the criteria are arranged in a pairwise

comparison matrix to produce the following comparison matrix of criteria.

	Table 5 Comparison Matrix of Criteria											
#	K1	K2	K3	K4	K5							
K1	1	3	5	6	5							
K2	0,3333	1	3	5	2							
K3	0,2	0,3333	1	3	0,3333							
K4	0,1667	0,2	0,3333	1	0,5							
K5	0,2	0,5	3	2	1							
Σ	1.9	5,0333	12,3333	17	8,8333							

Based on the table above, the normalization matrix and priority vector criteria can be calculated as follows.

Table 6 Normalization Matrix and Priority

				Vecto	or		
#	K 1	K2	K3	K4	K5	Amo	avera
						unt	ge
K1	0,52	0,59	0,40	0,35	0,56	2,446	0,489
	632	603	541	294	604	73	35
K2	0,17	0,19	0,24	0,29	0,22	1,137	0,227
	544	868	324	412	642	89	58
K3	0,10	0,06	0,08	0,17	0,03	0,466	0,093
	526	623	108	647	774	78	36
K4	0,08	0,03	0,02	0,05	0,05	0,269	0,053
	772	974	703	882	660	91	98
K5	0,10	0,09	0,24	0,11	0,11	0,678	0,135
	526	934	324	765	321	70	74

The average value (Priority Vector) is the sum of the eigenvalues divided by the number of criteria. The average value describes the level of importance of the criteria, the higher the value, the higher the level of importance. Next, determine the maximum eigenvalue (lamda) as follows:

$$\lambda_{maks} = \frac{\sum \lambda}{n} \tag{1}$$

$$\lambda_{maks} = 5,34334$$

Calculating the consistency index (CI) value using the formula $CI = \frac{(\lambda_{maks-n})}{(n-1)}$ so that the value is obtained CI = (5,34334-5) / (5-1) =0,08583. Calculate the consistency ratio (CR) value using the formula CR = CI/IR to obtain the value CR = 0,08583/1,12 = 0,07664. If CR < 0.1, then the pairwise comparison value in the given criteria matrix is consistent. If CR \ge 0.1, then the pairwise comparison value in the given criteria matrix is inconsistent. So, if it is inconsistent, then the filling of the values in the pairwise matrix in the criteria elements must be repeated. So that the comparison given for the criteria is consistent.

)

- 2) Calculation of alternative priority weights To find the priority weight of the criteria on the alternatives, it is done as many times as the number of criteria. The steps taken are the same as in finding the average (value weight) of the priority in the previous step. The following are the results of the calculation.
 - a) Comparison of alternatives to plant age The results of the comparison of alternatives to plant age are presented in the following table.

T	able 7. (Comparis	on of alt	ernatives	s to plant	age
Κ					amou	ave
1	A 1	10	12	A /	mt.	

K					amou	averag
1	A1	A2	A3	A4	nt	e
А	0,5060	0,558	0,437	0,413	1,915	0,4788
1	2	14	50	79	46	6
А	0,2530	0,279	0,250	0,413	1,195	0,2989
2	1	07	00	79	87	7
А	0,0722	0,069	0,062	0,034	0,239	0,0597
3	9	77	50	48	04	6
А	0,1686	0,093	0,250	0,137	0,649	0,1624
4	7	02	00	93	63	1
λ_{ma}	ks					4,1512
						4
CI						0,0504
						1
CR						0,0560
						2

b) Comparison of alternatives to land area The results of the comparison of alternatives to land area are presented in the following table.

Table 8. Comparison of alternatives to land area

K2	A1	A2	A3	A4	amount	average
A1	0,13333	0,1	0,14019	0,2	0,57352	0,14338
A2	0,26667	0,2	0,18692	0,2	0,85358	0,21340
A3	0,53333	0,6	0,56075	0,5	2,19408	0,54852
A4	0,06667	0,1	0,11215	0,1	0,37882	0,09470
λ_{mal}	ks					4,06756
CI						0,02252
CR						0,02502

c) Comparison of alternatives to soil pH The results of the comparison of alternatives to soil pH are presented in the following table.

Table 9.	Comparison	of alternatives	to soil pH

Κ					amount	Averag
3						e
	A1	A2	A3	A4		
А	0,1333		0,1	0,12	0,6283	0,1570
1	3	0,25	2	5	3	8
Α	0,0666	0,12	0,1	0,12	0,4766	0,1191
2	7	5	6	5	7	7

A 3 A	0,5333 3 0,2666	0,37 5	0,4 8 0.2	0,5	1,8883 3 1,0066	0,4720 8 0,2516
$4 \lambda_{max}$	7 ks	0,25	4	0,25	7	7 4,1216
CI						0,0405 4
CR						0,0450 5

d) Comparison of alternatives to land slope The results of the comparison of alternatives to land slope are presented in the following table.

T 11 10	a ·	C 1	. 1 1 1
Table 10.	Comparison	of alternatives	to land slope

		ompan	10011 0.		1411 - Co 10	1001107	51000
K4	A1	A2	A3	A4	amo	ount	average
			0,10	34			
A1	0,13636	0,27273	35	0,1	3636 0,64	4890	0,16223
			0,06	89			
A2	0,04545	0,09091	l 7	0,1	3636 0,34	1169	0,08542
			0,20	69			
A3	0,27273	0,27273	3 0	0,1	8182 0,93	3417	0,23354
	0 5 1 5 1 5	0.2626	0,62	06	1515 2.07	7504	0 51001
A4	0,54545	0,30304	+ 9	0,5	4545 2,0	/524	0,51881
Λ_{mak}	S						4,20923
CR							0,00975
CK				of 014		4.0	0,07750
	e) C	ompar	ison	or an	ernatives	10	water
	C	ontent					
	Т	he re	sults	of t	he com	paris	on of
	a	ternati	ves	to w	vater co	nten	t are
	n	resente	d in th	e follo	wing tah	le	
		~ 11 C			f altamat		
	Tabl	e 11. C	ompai	ison o	i alternati	lves	
		t	o wate	r conte	ent		
K5	A1	A2	A3	A4	amount	ave	rage
	0,23	0,18	0,23	0,33	0,9766		
A1	077	182	077	333	9	0.2^{4}	4417
	0.23	0.18	0.15	0.22	0.7886	,	
A2	077	182	385	222	6	0.19	9716
	0.46	0 54	0.46	0.33	1 8018	0,1	,,10
٨3	15/	545	154	333	6	0.44	5047
ЛJ	0.07	0.00	0.15	0.11	0 4227	0,4.	5047
	0,07	0,09	0,15	0,11	0,4327	0.4	
A4	692	091	385	111	9	0,10	0820
λ_m	aks					4,0	9227
CI						0,0	3076
CR	2					0.0	3417

b. Ranking

The ranking stage is the process of determining the best alternative by multiplying the average value of the calculation of the priority weight of the criteria against the average value of the calculation of the alternative weight.

	ruble 12. / merhanve runking									
#	K1	K2	K3	K4	K5	value	rank			
Κ	0,48	0,22	0,09	0,05	0,13					
	935	758	336	398	574					
A1	0,47	0,14	0,15	0,16	0,24	0,323	1			
	886	338	708	223	417	53				
A2	0,29	0,21	0,11	0,08	0,19	0,237	3			

Journal IJCIS homepage - https://ijcis.net/index.php/ijcis/index

	897	340	917	542	716	36	
A3	0,05	0,54	0,47	0,23	0,45	0,271	2
	976	852	208	354	047	90	
A4	0,16	0,09	0,25	0,51	0,10	0,167	4
	241	470	167	881	820	21	

Based on the ranking process above, the highest value obtained is A1 (Urea) with a result value of 0.32353. So that urea fertilizer becomes the best fertilizer recommendation for coffee plants is urea based on the calculation of the AHP method. Furthermore, the results are compared with the results of the developed application. From the results of the comparison carried out, the same results were obtained between the results of the manual comparison and the results of the system comparison shown in Figure 18.

Sistem Pendukung Keputusan Menggunakan Metode AHP								
Hasil Pe	rhitungar	n						
Overall Composite Height			Priority Vector (rata-rata)	Urea	KCL	ZA	Kieserit	
Umur Tanaman			0.48935	0.47866	0.29897	0.05976	0.16241	
Luas Lahan			0.22758	0.14338	0.2134	0.54852	0.0947	
Ph Tanah			0.09336	0.15708	0.11917	0.47208	0.25167	
Kemiringan Tanah			0.05398	0.16223	0.08542	0.23354	0.51881	
Kadar Air			0.13574	0.24417	0.19716	0.45047	0.1082	
Total				0.32353	0.23736	0.2719	0.16721	
Perangk Peringkat	ingan _{Alternatif}	Nilai						
Pertama	Urea	0.323525						
2	ZA	0.271899						
3	KCL	0.237362						
	Kleserit	0.167212						

Figure 18. Results of application system calculations

3.6 System Evaluation and Feasibility Study

User evaluation of a system is an effective way to measure various aspects of user performance, satisfaction, and experience [16]. Likert Scale is a commonly used tool to measure attitudes, perceptions, or judgments about various aspects, including the functionality of a web application [17]. Using Likert Scale in functional feasibility studies helps to quantitatively measure the extent to which web application features meet user needs, providing useful insights for further improvement and development[18].Furthermore, functional evaluation of the system is conducted using Likert Scale to measure satisfaction and effectiveness of various aspects of the system. Respondents are asked to rate various features of the system on a scale of 1 to 5, where 1 means "Strongly Disagree" and 5 means "Strongly Agree".

A questionnaire with Likert Scale-based questions was distributed to 9 users of the system. Data were collected and analyzed to calculate the percentage of respondents who gave scores at each level of the Likert Scale. The results were calculated to determine the percentage of feasibility of each feature. The results of the user evaluation are presented in the following table.

Table 13. Results of System Evaluation and Feasibility

		Results				
No	Question	S	S	Ν	TS	STS
		5	1	3	2	1
	The developed	5	т	5	2	1
1	application has an easy to understand display.	2	5	2	0	0
2	The language used in the system is easy to understand.	5	3	1	0	0
3	The developed application can be used and understood easily.	2	6	1	0	0
4	The developed application can be used according to its function	2	5	2	0	0
5	The buttons and menus in the developed application work properly.	3	4	2	0	0
6	The developed application can help provide appropriate fertilizer recommendations for coffee plants.	1	6	2	0	0
	Total	15	29	10	0	0
	Score	75	116	30	0	0
Total Score				221		
Max Score				270		
Percentage Value			8	1.852	%	

Furthermore, the Percentage Value (PV) obtained is interpreted according to the eligibility criteria in the following table.

Table 14. Eligibility Categories				
Percentage Value	Criteria			
(PV)				
$81\% < PV \le 100\%$	Very worthy			
$61\% < PV \leq 80\%$	Worthy			
$41\% < PV \le 60\%$	Quite worthy			
$21\% < PV \le 40\%$	Less worthy			
$0\% < PV \leq 20\%$	Not worthy			

Based on the table above, the user evaluation in the feasibility study conducted can be said to be very feasible. This is proven by the results of the feasibility study with a percentage value (PV) of 81.852%. So, the evaluation and feasibility study of the system developed using respondents as many as 8 system users is said to be very feasible.

VI. CONCLUSION

Based on the results of the research and discussion conducted in this study, it can be concluded that:

- 1. The decision support system for determining the right fertilizer for coffee plants using the AHP method developed using the PHP and MySQL programming languages is able to provide recommendations according to the criteria and alternatives given. In addition, the system was also tested for functionality using black box testing and validity testing of the system results. The test results showed that the functionality and validity tests were said to be good.
- 2. The system developed was said to be very feasible based on the evaluation and feasibility study of the system was 81.852% with a very feasible category.

REFERENCES

- D. P. Widiyani and J. S. S. Hartono, "Studi Eksplorasi Agroklimat Tanaman Kopi Robusta (Coffea canephora) Kabupaten Tanggamus, Lampung," *Jurnal AGRINIKA*, vol. 5, no. 1, pp. 20–29, 2021, doi: https://doi.org/10.55127/ae.v14i1.40.
- A. Susilo and K. S. Wicaksono, "Potensi [2] Kopi Pengembangan Tanaman Arabika Berdasarkan Tingkat Kesesuaian Lahan di Desa Bulukerto, Kecamatan Bumiaji, Kota Batu," Jurnal Tanah dan Sumberdaya Lahan, vol. 10, 83–95, Jan. 1, pp. 2023, doi: no. 10.21776/ub.jtsl.2023.010.1.9.
- [3] R. Wintoko and N. Marlena, "Analisis Strategi Pemasaran pada UMKM Rumah Kopi Temanggung," Jurnal Pendidikan Tata Niaga (JPTN), vol. 9, no. 1, pp. 1160–1166, 2021, doi: https://doi.org/10.26740/jptn.v9n1.p1160-1166.
- B. A. Septiani, "Analisa PenyebabTurunya Produksi Kopi Robusta Kabupaten Temanggung," *EKUITAS: Jurnal Ekonomi dan Keuangan*, vol. 5, no. 3, pp. 365–388, Sep. 2021, doi: 10.24034/j25485024.y2021.v5.i3.4612.
- [5] D. A. H. Kusuma, W. Ilham, P. Sokibi, and R. T. Subagio, "Sistem Pendukung Keputusan Penentuan Pupuk pada Tanaman Buah Mangga Menggunakan Metode TOPSIS Berbasis Web," *Jurnal DIGIT*, vol. 12, no. 2, pp. 191–202, 2022, doi: https://doi.org/10.51920/jd.v12i2.295.

- [6] M. H. As-Siddiqi, K. Auliasari, and R. P. Prasetya, "Pembangunan Sistem Rekomendasi jenis Pupuk pada Tanaman Sawit Menggunakan Metod AHP ((Analytical Hierarchy Process)," *Jurnal Mahasiswa Teknik Informatika (JATI)*, vol. 6, no. 2, pp. 657–964, 2022, doi: https://doi.org/10.36040/jati.v6i2.5407.
- [7] Riky Mahendra and I Gusti Ngurah Anom Cahyadi Putra, "Rancang Bangun Website Arsip Aktivitas Harian Pegawai Badan Kepegawaian dan Pengembangan Sumber Daya Manusia Kabupaten Badung," Jurnal Elektronik Ilmu Komputer Udayana, vol. 8, no. 1, 2019.
- [8] S. Rahmatullah and R. Abdurahman, "Sistem Pendukung Keputusan Penentuan Lahan Kopi Terbaik dengan Metode AHP (Analytic Hierarchy Process)," *Jurnal Informasi dan Komputer*, vol. 8, no. 1, pp. 1–7, 2020, doi: 10.35959/jik.v8i1.167.
- [9] E. N. S. Purnomo, S. W. Sihwi, and R. Anggrainingsih, "Analisis Perbandingan Menggunakan Metode AHP, TOPSIS dan AHP-TOPSIS dalam Studi Kasus Sistem Pendukung Keputusan Penerimaan Siswa Program Akselerasi," Jurnal ITSMART, vol. 2, no. 1, pp. 16–23, 2013.
- [10] Adi Nugroho, *Rekayasa Perangkat Lunak Berorientasi Objek dengan Metode USDP*. Yogyakarta: Penerbit Andi, 2010.
- [11] A. Mubarak, "Rancang bangun Aplikasi Web Sekolah Menggunakan UML (Unified Modeling Language) dan bahasa Pemrograman PHP (PHP Hypertext Preprocessor) Berorientasi Objek," *JIKO (Jurnal Informatika dan Komputer) Ternate*, vol. 02, no. 1, pp. 19–25, 2019.
- [12] F. Fatkhurrochman, R. D. Handayani, Y. Febriani, and T. Yusnanto, "Web-Based Information and Reservation Media for VW Safari Borobudur," *International Journal of Computer and Information System (IJCIS) Peer Reviewed-International Journal*, vol. 04, no. 2, pp. 2745–9659, 2023, doi: https://doi.org/10.29040/ijcis.v4i2.122.
- [13] A. C. Praniffa, A. Syahri, F. Sandes, U. Fariha, Q. A. Giansyah, and M. L. Hamzah, "Pengujian Black Box dan white Box Sistem Informasi Parkir Berbasis Web," *Jurnal Testing dan Implementasi Sistem Informasi*, vol. 1, no. 1, pp. 1–16, 2023.
- [14] I. Laili Khasanah, K. Kapti, and fatkhurrochman Fatkhurrochman, "Perancangan Sistem Informasi pada MI Adipati Sindurejo Jumo," Jurnal Rekayasa Sistem Informasi dan Teknologi, vol. 1, no. 4, pp. 262–272, 2024.
- [15] fatkhurrochman Fatkhurrochman and M. A. Muin, "Sistem Pendukung Keputusan Penentuan Kinerja Perawat Terbaik di Klinik Amanah

dengan Metode Simple Additive Weighting," Jurnal TEKINKOM, vol. 5, no. 2, pp. 351–363, 2022, doi: 10.37600/tekinkom.v5i1.535.

- [16] C. Y. Pongmakamba and J. J. C. Tambotoh, "Evaluasi Sistem Informasi Akademik Satya Wacana Menerapkan Model for Mandatory Use of Software Technologies," *JURIKOM (Jurnal Riset Komputer)*, vol. 10, no. 2, p. 387, Apr. 2023, doi: 10.30865/jurikom.v10i2.5837.
- [17] S. Syofian, T. Setiyaningsih, and N. Syamsiah, "Otomatisasi Metode Penelitian Skala Likert Berbasis Web," in *Seminar Nasional Sains dan Teknologi*, 2015, pp. 1–8.
- [18] S. Fatkhurrochman, K. Kapti, T. Yusnanto, Y. Febriani, T. Muhammad, and A. Muin, "Website-Based Management of School Committee Contributions," Institutional Development Journal Computer International ofand Information System (IJCIS) Peer Reviewed-International Journal, vol. 05, no. 01, pp. 2745-9659, 2024, [Online]. Available: https://ijcis.net/index.php/ijcis/indexJournalIJCIS homepage-https://ijcis.net/index.php/ijcis/index