Estimation System For Late Payment Of School Tuition Fees

Muqorobin Muqorobin, Kusrini Kusrini, Siti Rokhmah, Isnawati Muslihah

Abstract

The Surakarta Al-Islam Vocational School is a private educational institution that requires all students to pay school tuition fees. Education is an obligation for all Indonesian citizens. The cost of education is one of the most important input components in implementing education. Because cost is the main requirement in achieving educational goals. SPP School is a routine school fee that is carried out every month. Based on last year's School Admin report, many students were late in paying school tuition fees, around 60%. This is a very big problem because the income of school funds comes from school tuition. The purpose of this research is that the researcher will build a prediction system using the best classification method, which is to compare the accuracy level of the Naïve Bayes method with the K-K-Nearest Neighbor method. Because both methods can make class classifications right or late, in paying school fees. processing using dapodic data for 2017/2018 as many as 236 data. In improving accuracy, the researcher also applies feature selection with Information Gain, which is useful for selecting optimal parameters. System testing is carried out using the Confusion Matrix method. The final results of this study indicate that the Naïve Bayes Method + Information Gain Method produces the highest accuracy, namely 95% compared to the Naïve Bayes method alone, namely 85% and the K-NN method, namely 81%.

Full Text:

PDF

References

1. S. P. Rochmiyati, “Kebijakan pendidikan bahasa Indonesia dalam perspektif pendidikan nasional,” Caraka, vol. 1, no. 2, pp. 3–14, 2015.

2. Menteri Pendidikan dan Kebudayaan, “Peraturan Menteri Pendidikan Dan Kebudayaan Republik Indonesia Nomor 19 Tahun 2016 Tentang Program Indonesia Pintar,” pp. 1–9, 2016.

3. I. Sanjiwani, “Analisis Biaya Pendidikan Dan Dampaknya Terhadap Kualitas Proses Pembelajaran Dan Aspirasi Pendidikan Siswa (Studi Tentang Persepsi Para Siswa Sma Dwijendra Denpasar Tahun Pelajaran 2011/2012),” J. Adm. Pendidik., vol. 3, no. 2, 2012.

4. H. Asri, H. Mousannif, H. Al Moatassime, and T. Noel, “Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis,” Procedia Comput. Sci., vol. 83, no. Fams, pp. 1064–1069, 2016.

5. M. Hasan, “Menggunakan Algoritma Naive Bayes Berbasis,” vol. 9, pp. 317–324, 2017.

6. W. Gata et al., “Algorithm Implementations Naïve Bayes, Random Forest. C4.5 on Online Gaming for Learning Achievement Predictions,” vol. 258, no. Icream 2018, 2019.

7. Y. A. Gerhana, W. B. Zulfikar, A. H. Ramdani, and M. A. Ramdhani, “Implementation of Nearest Neighbor using HSV to Identify Skin Disease,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, 2018.

8. M. Tayyib et al., “Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals,” PLoS One, vol. 15, no. 1, p. e0225397, 2020.

9. N. Y. Moteghaed, K. Maghooli, and M. Garshasbi, “Improving Classification of Cancer and Mining Biomarkers from Gene Expression Profiles Using Hybrid Optimization Algorithms and Fuzzy Support Vector Machine,” J. Med. Signals Sens., vol. 8, no. 1, pp. 1–11, 2018.

10. R. A. Saputra, “Komparasi Algoritma Klasifikasi Data Mining Untuk Memprediksi Penyakit Tuberculosis ( Tb ): Studi Kasus Puskesmas Karawang,” Semin. Nas. Inov. dan Tren, no. April, pp. 1–8, 2014.

11. C. Darujati, “PERBANDINGAN KLASIFIKASI DOKUMEN TEKS MENGGUNAKAN METODE NAÏVE BAYES DENGAN K-NEAREST NEIGHBOR Abstrak,” Univ. Stuttgart, vol. 13, no. 1, pp. 1–9, 2010.

12. A. D. Rachid, A. Abdellah, B. Belaid, and L. Rachid, “Clustering prediction techniques in defining and predicting customers defection: The case of e-commerce context,” Int. J. Electr. Comput. Eng., vol. 8, no. 4, pp. 2367–2383, 2018.

13. M. Sadikin and F. Alfiandi, “Comparative study of classification method on customer candidate data to predict its potential risk,” Int. J. Electr. Comput. Eng., vol. 8, no. 6, pp. 4763–4771, 2018.

14. M. Wang, Z. H. Ning, C. Xiao, and T. Li, “Sentiment classification based on information geometry and deep belief networks,” IEEE Access, vol. 6, pp. 35206–35213, 2018.

15. S. Saha and D. Nandi, “Data Classification based on Decision Tree, Rule Generation, Bayes and Statistical Methods: An Empirical Comparison,” Int. J. Comput. Appl., vol. 129, no. 7, pp. 36–41, 2015.

16. Y. F. Safri, R. Arifudin, and M. A. Muslim, “K-Nearest Neighbor and Naive Bayes Classifier Algorithm in Determining The Classification of Healthy Card Indonesia Giving to The Poor,” Sci. J. Informatics, vol. 5, no. 1, p. 18, 2018.

17. A. Dey, “Machine Learning Algorithms: A Review,” Int. J. Comput. Sci. Inf. Technol., vol. 7, no. 3, pp. 1174–1179, 2016.

18. S. Chormunge and S. Jena, “Efficient feature subset selection algorithm for high dimensional data,” Int. J. Electr. Comput. Eng., vol. 6, no. 4, pp. 1880–1888, 2016.

19. G. C. Sutradana and M. D. R. Wahyudi, “Penerapan Data Mining Untuk Analisis Pengaruh Lama Studi Mahasiswa Teknik Informatika Uin Sunan,” Penerapan Data Min. Untuk Anal. Pengaruh Lama Stud. Mhs. Tek. Inform. Uin Sunan Kalijaga Yogyakarta Menggunakan Metod. Apriori, vol. 1, no. 3, pp. 153–162, 2017.

20. I. Handayani, “Application of K-Nearest Neighbor Algorithm on Classification of Disk Hernia and Spondylolisthesis in Vertebral Column,” Indones. J. Inf. Syst., vol. 2, no. 1, p. 57, 2019.

21. Abdullah, Robi W., et al. "Keamanan Basis Data pada Perancangan Sistem Kepakaran Prestasi Sman Dikota Surakarta." Creative Communication and Innovative Technology Journal, vol. 12, no. 1, 2019, pp. 13-21.

22. Muqorobin, M., Apriliyani, A., & Kusrini, K. (2019). Sistem Pendukung Keputusan Penerimaan Beasiswa dengan Metode SAW. Respati, 14(1).

23. Muqorobin, M., Hisyam, Z., Mashuri, M., Hanafi, H., & Setiyantara, Y. (2019). Implementasi Network Intrusion Detection System (NIDS) Dalam Sistem Keamanan Open Cloud Computing. Majalah Ilmiah Bahari Jogja, 17(2), 1-9.

24. K. Kusrini, E. T. Luthfi, M. Muqorobin and R. W. Abdullah, "Comparison of Naive Bayes and K-NN Method on Tuition Fee Payment Overdue Prediction," 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 2019, pp. 125-130, doi: 10.1109/ICITISEE48480.2019.9003782.

Refbacks

  • There are currently no refbacks.