Claterization of Primary Schools In The Surakarta Region Using The K-Medoids Method Based on School Costs and Facilities

Siti Rokhmah

Abstract


Basic education has an important role in forming the foundation of a child's character. The city of Surakarta is a city that has many choices of elementary schools, both public and private. The large number of elementary schools requires clustering, so that it can help the government and the community in decision making. The most important factors in choosing an elementary school are school facilities and costs, so the clustering in this research is based on educational costs and the facilities provided by the school. The method used in this research is the K-Medoids clustering method, namely a clustering method that groups data based on groups that have maximum similarity. To evaluate the clustering results, silhoette value calculations are used. It is hoped that this research can help the government, especially the education department, in mapping elementary schools in the Surakarta area and assist parents in determining elementary school choices.

Full Text:

PDF

References


Suhirman, “Pengaruh Biaya Pendidikan terhadap Hasil Belajar melalui Proses Belajar Mengajar di Sma Negeri Se-Kabupaten Rembang Tahun 2011,” J. Econ. Educ., vol. 1, no. 2, pp. 117–122, 2012.

N. A. Prastika, H. Zhafirah, A. R. Sari, and ..., “Pengaruh Sarana Prasarana, Biaya, Dan Lokasi Sekolah Dalam Menentukan Pilihan Rasional Orang Tua Memilihkan Sekolah Untuk …,” Pros. Semin. …, 2022, [Online]. Available: https://prosiding.unimus.ac.id/index.php/semnas/article/view/1239%0Ahttps://prosiding.unimus.ac.id/index.php/semnas/article/viewFile/1239/1240

P. Y. A. Dewi and L. Indrayani, “Persepsi Orang Tua Siswa Terhadap Biaya Pendidikan,” Ekuitas J. Pendidik. Ekon., vol. 9, no. 1, p. 69, 2021, doi: 10.23887/ekuitas.v9i1.27034.

M. F. Edy Irwansyah, Clustering Teori dan Aplikasi. 2015.

N. Nurahman, A. Purwanto, and S. Mulyanto, “Klasterisasi Sekolah Menggunakan Algoritma K-Means berdasarkan Fasilitas, Pendidik, dan Tenaga Pendidik,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, pp. 337–350, 2022, doi: 10.30812/matrik.v21i2.1411.

A. Asroni and R. Adrian, “Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang,” Semesta Tek., vol. 18, no. 1, pp. 76–82, 2016, doi: 10.18196/st.v18i1.708.

M. E. Pratama and A. Finandhita, “Penerapan Metode Clustering untuk Pengelompokan Potensi Wisata di Kabupaten Sumedang,” J. Ilm. Komput. dan Inform., no. 112, 2019.

F. Fajriana, “Analisis Algoritma K-Medoids pada Sistem Klasterisasi Produksi Perikanan Tangkap Kabupaten Aceh Utara,” J. Edukasi dan Penelit. Inform., vol. 7, no. 2, p. 263, 2021, doi: 10.26418/jp.v7i2.47795.

S. Bahri and D. M. Midyanti, “Penerapan Metode K-Medoids untuk Pengelompokan Mahasiswa Berpotensi Drop Out,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 1, pp. 165–172, 2023, doi: 10.25126/jtiik.20231016643.

S. Defiyanti, M. Jajuli, and N. Rohmawati, “Optimalisasi K-MEDOID dalam Pengklasteran Mahasiswa Pelamar Beasiswa dengan CUBIC CLUSTERING CRITERION,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 211–218, 2017, doi: 10.25077/teknosi.v3i1.2017.211-218.

M. A. Nahdliyah, T. Widiharih, and A. Prahutama, “METODE k-MEDOIDS CLUSTERING DENGAN VALIDASI SILHOUETTE INDEX DAN C-INDEX (Studi Kasus Jumlah Kriminalitas Kabupaten/Kota di Jawa Tengah Tahun 2018),” J. Gaussian, vol. 8, no. 2, pp. 161–170, 2019, doi: 10.14710/j.gauss.v8i2.26640.




DOI: https://doi.org/10.29040/ijcis.v4i4.153

Article Metrics

Abstract view : 105 times
PDF - 61 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License