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Abstract— Class imbalance in datasets poses significant challenges to traditional machine learning models, such as 

Support Vector Machines (SVM), leading to poor performance in minority class classification. To address this issue, this 

study introduces a hybrid approach, Posterior Probability and Correlation-SVM (PC-SVM), which combines posterior 

probability estimation and correlation analysis. The purpose of this research is to enhance SVM's ability to classify 

imbalanced datasets by weighting attributes based on their correlation with the target class and leveraging posterior 

probabilities to refine decision boundaries. The methodology includes preprocessing datasets to ensure data quality, 

applying correlation analysis to calculate attribute weights, and using these weights to transform input features into 

posterior probability estimates. The transformed features serve as inputs to the SVM for classification. Experiments were 

conducted on two datasets: Yeast and Churn, which exhibit varying degrees of class imbalance. The results demonstrate 

that the PC-SVM model achieves 100% accuracy, precision, recall, and F1-scores across all classes, significantly 

outperforming the standard SVM. The approach effectively mitigates the bias toward majority classes by improving 

sensitivity to minority instances. This study highlights the robustness and reliability of the PC-SVM model in handling 

imbalanced data classification. In conclusion, integrating posterior probabilities with correlation-based attribute 

weighting significantly enhances the performance of SVMs on imbalanced datasets. Future research should focus on 

extending this approach to multiclass problems and optimizing its computational efficiency. 
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I. INTRODUCTION 

Supervised categorization entails employing a 

training dataset and statistical learning techniques to 

classify items into designated categories, followed by 

the use of this knowledge to categorize new data [1]. 

Supervised learning, a core component of machine 

learning, employs algorithms that discern patterns in 

data by leveraging known independent and dependent 

variables to forecast future outcomes, with supervised 

classification presuming cluster labels as parameters 

while tackling issues such as class distribution 

imbalance [2].   

The importance of imbalanced data classification 

is growing in the domains of data mining and machine 

learning [3]. A dataset exhibits imbalance when one 

class substantially exceeds the other, with the minority 

class designated as the positive (+) class and the 

majority class as the negative (−) class in data 

classification [3]. The problem of class imbalance has 

received considerable attention in recent studies. [4]–

[10]. Previous research efforts have aimed to tackle 

the problem of data imbalance by incorporating 

sampling, ensemble, and cost-sensitive techniques into 

classification systems. Sampling strategies are 

employed to convert the distribution of imbalanced 

data into a balanced distribution. [11]. The challenge 

of learning from imbalanced data sets is a considerable 

impediment in the domain of data mining. 

Conventional support vector machines often exhibit 

robust performance in addressing classification issues 

with imbalanced datasets; nevertheless, they regard all 

training samples uniformly during the learning phase. 

This may result in a bias in the ultimate decision 

boundary favoring the majority class, especially in the 

presence of outliers or noise [12]. Imbalanced data 

categorization transpires when one class possesses a 

greater number of instances than another, resulting in 

the majority class frequently eclipsing the minority 

class, which conventional classifiers often regard as 

noise. This bias towards the majority class has 

necessitated the creation of diverse methodologies to 

mitigate this problem [13]. 

The support vector machine (SVM) is an 

effective machine learning tool recognized for its 

speed, simplicity, reliability, and capacity to yield 

accurate categorization outcomes [14]. Support Vector 

Machine (SVM) constructs a model utilizing the 

available sample sizes of each class. The concept of 

SVM learning is based on the principles of structural 

risk minimization. The Support Vector Machine 

(SVM) can be utilized to reduce the limitations of 

generalization error, hence improving its efficacy 
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when applied to data beyond the training set [15]. The 

objective of Support Vector Machine (SVM) is to 

determine the hyperplane that distinguishes two 

classes inside a vector space. [16]. The separating 

hyperplane is positioned between two parallel 

hyperplanes, with one positioning vectors of the first 

class above it and the other positioning vectors of the 

second class below it. The margin denotes the distance 

between these hyperplanes, and in scenarios 

permitting misclassifications for enhanced 

generalization, the margin is considered "soft." 

Meanwhile, SVM continues to be an exceptionally 

effective method for supervised classification. [1].  

 

Conventional classification methods presume 

uniform probabilities for data across various classes; 

however, in practical situations, minority classes often 

possess fewer data points than majority classes. This 

discrepancy leads to a bias in traditional algorithms 

favoring majority classes, thereby diminishing the 

accuracy of minority class classification [2]. To tackle 

the issues of imbalanced data, numerous solutions 

have been suggested, classified into three categories: 

Data-level techniques that alter sample probabilities 

via oversampling or undersampling to equilibrate the 

dataset, algorithm-level techniques that modify 

classification systems with cost-sensitive strategies to 

impose greater penalties on the misclassification of 

minority samples, and fusion approaches that integrate 

various methods, such as sampling and cost-sensitive 

techniques, to address the imbalance problem [2]. 

 

 

II. RESEARCH METHODS 

The research process has five unique phases: Data 

Sources, Data Preparation, Experimentation, 

Modeling, and Model Evaluation.   

 

2.1 Data Sources 

The research issue necessitates the use of data in order 

to provide a response. The research resources utilized 

in this study consist of publicly available data sets 

obtained from the UC Irvine (UCI) Machine Learning 

Repository and Kaggle.  

Table 1 displays the roster of utilized data sources. 

 

Table 1. List of data source 

Public 

Dataset 

References 

UCI [17] [18] [19] [20] [21] [22] [23] [24] 

[25] [26] 

Kaggle [27] [28] [29] [30] [31] [32] [33] [34] 

[35] [36][37] 

 

Table 2. The churn dataset exhibits the highest 

imbalance ratio at 5.36. The maximum occurrences in 

the churn dataset are 3150. The dataset with the most 

features is churn, comprising 13 features, while the 

dataset with the fewest features is yeast, containing 8 

features. 

 

Table 2. Detail Dataset 
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2.2 Data Preparation 

Data preparation is an essential technique in machine 

learning that can significantly improve model 

outcomes. [38] [39] [40]. Data pre-processing is a 

crucial and fundamental phase in the machine learning 

lifecycle.  A major challenge in the healthcare sector is 

acquiring a complete and untainted dataset. The 

quality of data is crucial, since it can profoundly affect 

the model's learning ability and overall 

generalizability [41]. Efficient and precise algorithms 

can be attained through the utilization of excellent data 

preparation techniques and processes. This provides a 

robust foundation for data-driven decision-making and 

application development [42]. The data was subjected 

to preprocessing techniques such as encoding, 

imputation, transformation of skewed distributions, 

balancing, scaling, and selection of features [43] [44] 

[45]. Data preprocessing involves a set of techniques 

designed to enhance the quality of the original data, 

such as the removal of outliers and the imputation of 

missing values [46]. A crucial phase in the data 

analysis process is preprocessing, which involves 

converting raw data into a format that is interpretable 

by computers and machine learning algorithms. This 

critical phase profoundly impacts the precision and 

efficacy of machine learning models [47]. The data 

preparation process encompasses essential stages, such 

as missing value identification and data 

transformation. 

 

2.3 Experiment 

This research conducts a series of experiments to 

evaluate classification performance under various 
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conditions, focusing on the performance of PC-SVM 

and SVM classifiers when applied to imbalanced 

datasets. The study aims to compare the effectiveness 

of these classifiers in handling the challenges posed by 

imbalanced data, analyzing their ability to produce 

accurate predictions and assess the impact of dataset 

imbalance on their performance. The experiments will 

explore how each classifier responds to skewed data 

distributions, providing insights into their robustness 

and efficiency in such contexts. 

 

2.4 Modelling 

The general architecture of a Support Vector Machine 

(SVM) involves three main layers: the input layer, the 

hidden layer, and the output layer. The input layer 

accepts the features of the data, denoted as 

𝑋1, 𝑋2, . . . , 𝑋𝑛,  , which are then transformed using a 

kernel function, 𝐾 (𝑋, 𝑋𝑖), to map the input data into a 

higher-dimensional space. This transformation enables 

the SVM to find a hyperplane that maximizes the 

margin between different classes. The hidden layer 

computes these transformations and combines them 

with a bias term, 𝑏, and the outputs of the kernel 

functions are summed to generate the result. Finally, 

the output layer provides the classification or 

regression outcome based on the computed values. 

The architecture emphasizes the importance of kernel 

functions in handling non-linear relationships, making 

SVM a versatile and powerful model for various types 

of data. Figure 1 is the General architecture of the 

SVM. 

 
 

Figure 1: General architecture of the SVM 

 

The proposed concept integrates the method known as 

PC-SVM, which stands for Posterior Probability and 

Correlation-Support Vector Machine. The core 

premise of the PC-SVM method is the integration of 

Posterior Probability and Correlation Techniques, 

which significantly enhances SVM performance on 

imbalanced datasets. In an imbalanced dataset, where 

one class predominates, posterior probability 

facilitates the computation of class probabilities based 

on feature likelihood, thus elucidating the probability 

of a sample belonging to either the minority or 

majority class. The probability distribution is 

optimized by multiplying the prior probability with the 

aggregate product of the R-squared value of feature i 

of class Y and the independent probabilities of all 

feature vectors X. The attribute weights in the 

proposed method are derived from the correlation 

coefficient between the attribute and the class. The 

correlation coefficient ranges from -1 to 1, indicating 

that the attribute weighting value may be negative. To 

avert the emergence of negative values, the R Square 

value is utilized for attribute weighting. Attribute 

weighting is a technique in which the R Square value 

of each attribute for the class is multiplied by the 

probability of each attribute to compute the 

conditional probability in the Naive Bayes Classifier 

utilizing the joint probability method.  

Figure 2 depicts the overall structure of the suggested 

algorithm: 

 

 
 

Figure 2: General architecture of the proposed 

algorithm 

 

This attribute weighting can enhance accuracy by 

evaluating the strength of the attribute's correlation 

with the designated class. The posterior probabilities 

are utilized as input features for the SVM, which is 

proficient in identifying the ideal separating 

hyperplane between classes. By employing posterior 

probabilities to transform the original feature space 

into probability estimates, SVM can concentrate on 

maximizing the margin between classes utilizing these 

probabilities. This alleviates disparities by enhancing 

the sensitivity of decision limits to minority class 

instances, hence improving classification accuracy and 

diminishing bias towards the majority class. 

 

The PC-SVM algorithm utilizes an attribute weighting 

method grounded in R Square. The R Square value is 

a statistic that quantifies the extent of influence a 

characteristic has on the class, taking into account its 
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weight. The dataset has attributes 𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛, 

each associated with matching weights 

𝑅1, 𝑅2, 𝑅3, . . . , 𝑅𝑛. The SVM approach use joint 

probability to determine conditional probability. 

attribute weighting is a technique that allocates a 

numerical number to each attribute to signify its 

relative significance. Therefore, the correct strategy in 

conditional probability is utilizing the principle of 

total addition instead of total multiplication. The 

posterior probability is utilized to determine the level 

of confidence in a classification.  

 

The posterior probability alone offers probabilities 

without accounting for the strength of associations 

among features. Incorporating R Square enhances the 

model's informational depth, as each feature is 

evaluated not only by its likelihood distribution but 

also by its significance to the target class. This leads to 

a more profound probability framework, which is 

crucial for addressing imbalanced datasets, because 

the bulk of attributes may be more pertinent to the 

dominant class and less effective in identifying the 

minority class. By integrating R Square with the 

independent probabilities of characteristics, enhance 

the model's sensitivity to fluctuations and patterns 

associated with the minority class. This method 

enables the model to identify nuanced patterns crucial 

for recognizing the minority class in an imbalanced 

dataset, which frequently becomes obscured by the 

prevalence of the dominant class. 

 

2.5 Model Evaluation 

2.5.1 Confusion Matrix 

In supervised learning classification problems, model 

performance evaluation frequently depends on the 

metrics obtained from the confusion matrix. This 

matrix illustrates the actual and forecasted values for 

the categories of the target attribute [48]. The 

confusion matrix is a widely utilized metric in 

addressing classification challenges. It is applicable to 

both binary and multiclass classification issues [49]. 

Table 3 presents an example of a confusion matrix for 

binary classification. 

 

Table 3. Confusion Matrix for Binary Classification 

 Predicted 

Actual 

 Negative Positive 

Negative   

Positive   

 

The models are assessed using Accuracy, Precision, 

Recall, and F1 Score derived from the confusion 

matrix. The confusion matrix is structured by Total 

True Positive (TTP), Total False Negative (TFN), 

Total True Negative (TTN), and Total False Positive 

(TFP) to delineate model performance, as articulated 

in equations (1) through (4) [50]. 

 

Accuracy is the ratio of correctly predicted labels to 

the total number of predicted labels, as expressed by 

equation (1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

1 +  (
𝑇𝐹𝑃+𝑇𝐹𝑁

𝑇𝑇𝑃+𝑇𝑇𝑁
)
 

(1) 

 

Precision is determined by dividing the count of true 

positives by the total of true positives and false 

positives. False positives arise when the model 

erroneously classifies negative instances as positive. 

In this instance, false positives imply individuals 

erroneously identified as terrorists by the model, while 

not being so. The definition of precision is provided in 

equation (2): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
1

1 + 
𝑇𝐹𝑃

𝑇𝑇𝑃

 
(2) 

 

The formula for recall in a classification 

algorithm is given by equation (3): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(TTP)

(TTP +  TFN) 
 

(3) 

 

 

The F1 Score of a system is determined as the 

weighted harmonic mean of its precision and recall. 

The F1 Score is defined by equation (4). 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 𝑥  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 𝑥  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(4) 

 

 

2.5.2 Scatter Plot 

A scatter plot is a form of data visualization that 

represents values for usually two variables within a 

dataset. Every point on the graph signifies an 

observation inside the dataset. The location of a point 

on the horizontal (x) axis denotes the value of one 

variable, while the position on the vertical (y) axis 

indicates the value of the other variable. Scatter plots 

are employed to examine relationships, patterns, and 

correlations between two variables. Below are few 

essential elements: 

a. Correlation: Scatter plots can illustrate positive 

correlation, negative correlation, or the absence of 

correlation between the variables. 

1) Positive correlation: An increase in one 

variable corresponds with an increase in the 

other variable. 

2) Negative correlation: An rise in one variable 

corresponds to a decrease in the other 

variable. 

3) No correlation: No discernible relationship 

exists between the variables. 
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b. Trend lines: Occasionally, a line of best fit, or 

trend line, is incorporated into the scatter plot to 

illustrate the overall trajectory of the data points. 

This can assist in discerning linear correlations 

among the variables. 

c. groupings and outliers: Scatter plots help elucidate 

groupings of data points and pinpoint outliers that 

markedly diverge from the other observations. 

d. Multidimensional scatter plots: Unlike 

conventional scatter plots that are two-

dimensional, further dimensions can be illustrated 

through variations in color, size, or shape of the 

points. 

 

 

III. RESULT AND ANALYSIS 

 

3.1 Correlation 

Correlations are extensively employed statistical 

methods that underpin several applications, including 

exploratory data analysis, structural modeling, and 

data engineering [51]. The objective of correlation 

analysis is to identify the link between the independent 

variable (X) and the dependent variable (Y), 

contingent upon specific data conditions. Equation (5) 

is employed to ascertain the correlation value, while 

equation (6) is utilized to derive R Square. 

 

𝑟 =
∑(𝑋𝑖 −  �̅� ) (𝑌 − �̅�)

√∑(𝑋𝑖 − �̅� )2  ∑(𝑌 − �̅� )2
 

(5) 

  

𝑅 = 𝑟2 (6) 

 

If X is a vector of unspecified classification, with 

features indexed by i =  {1, … , q}, and R(𝑖|Y) 

represents the weight attributes obtained from the R-

squared value of each feature in class Y. The R value 

is calculated using equation (6). The coefficient of 

determination, R², for all features in vector X relative 

to the dependent variable Y is calculated using 

equation (7). 

𝑅(𝑖|𝑌) = 𝑅 (7) 

with 

R : 𝑟 Square 

𝑟 : correlation coefficient value 

�̅� : Mean of the attribute 𝑋𝑖 

�̅� : Mean of  𝑌 

𝑅(𝑖|𝑌) : 𝑟 Square attribute 𝑖 to class 𝑌 

 

In classification tasks, posterior probability primarily 

assesses the likelihood of class membership based on 

the observed data. This strategy is restrictive as it 

presumes that all features contribute equally and 

independently to the classification task, disregarding 

the strength of relationships between individual 

features and the target class. 

 

The incorporation of R Square in the equation alters 

this dynamic by offering a metric for the extent to 

which each characteristic accounts for the variance in 

the target class. Incorporating R Square into the model 

provided further insights into the significance of each 

feature about the target class, surpassing just 

probability predictions. If a specific feature exhibits a 

high R Square value, it is significantly linked with the 

target class and should be prioritized in the 

classification decision. 

 

4.1 Posterior Probability 

Probability theory is a scientific discipline that 

employs statistical approaches to comprehend random 

events [52]. Possibility theory is founded on two 

fundamental principles. These Prior probability and 

posterior probability. The posterior probability 

represents the possibility of an event occurring, 

calculated after considering all available information 

or data [52].  To compute the posterior probability for 

the PC-SVM approach, it is essential to select the 

maximum value from the various prior probabilities, 

utilizing conditional probability. The equation (8) is 

employed to compute the posterior probability. 

 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

= max ( 𝑃(𝑌) ∑ 𝑃(𝑋𝑖|𝑌)

𝑞

𝑖=1

) 

 

(8) 

Posterior probability and correlation analysis are 

potent methodologies that can enhance one another in 

predictive modeling. This probabilistic output 

facilitates more nuanced decision-making in 

categorization problems. Conversely, correlation 

analysis assesses the magnitude and orientation of 

correlations among variables. Integrating these 

strategies can improve model performance by 

comprehending feature interdependencies and 

identifying the most pertinent variables. This method 

enhances classification accuracy and facilitates the 

interpretation of the underlying data structure, 

providing insights into the collective influence of 

features on outcomes. Equation (9) represents the 

Posterior Probability with Correlations. 

 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑤𝑖𝑡ℎ Correlations

= max ( 𝑃(𝑌) ∑(𝑃(𝑋𝑖|𝑌) 𝑅(𝑖|𝑌))

𝑞

𝑖=1

) 

 

(9) 
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4.2 Posterior Probability and Correlation-Support 

Vector Machine (PC-SVM) 

The integration of posterior probability and SVM 

employs the product of prior probability and the 

cumulative sum of the products of R Square feature i 

of class Y with the independent probability of all 

attribute vectors X as input features for the SVM 

model. The SVM will utilize these features to 

distinguish the classes by the maximum margin. 

 

4.2.1 Probability Posterior  

The posterior probability for each class 𝑌1 and 𝑌2 

based on the attributes 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) of the 

sample. 

𝑃(𝑌1|𝑋) = 𝑃(𝑌1) ∑(𝑃(𝑋𝑖|𝑌1) 𝑅(𝑖|𝑌))

𝑞

𝑖=1

 

(10) 

 

𝑃(𝑌2|𝑋) = 𝑃(𝑌2) ∑(𝑃(𝑋𝑖|𝑌2) 𝑅(𝑖|𝑌))

𝑞

𝑖=1

 

(11) 

 

 

 

𝑃(𝑌1) and 𝑃(𝑌2) represent the prior probabilities of 

classes 𝑌1 and 𝑌2, while 𝑃(𝑋1|𝑌1) and 𝑃(𝑋2|𝑌2) 

denote the conditional probabilities of attribute 𝑋 

inside each class. Following the acquisition of the 

probabilities (𝑌1|𝑋) and 𝑃(𝑌2|𝑋), these probabilities 

are utilized as novel input features for the SVM 

model. 

 

4.2.2 SVM Formulation with Posterior Probability 

SVM aims to find a hyperplane 𝑓(𝑧) that separates 

two classes 𝑌1 and 𝑌2 based on a new input attribute 

𝑧 = (𝑃(𝑌1|𝑋), 𝑃(𝑌2|𝑋)). The decision function for 

SVM, given a feature vector 𝑧 is mathematically 

expressed by equation (12): 

 

𝑓(𝑧) = 𝑤⊤𝑧 + 𝑏 (12) 

subject to, 

�̂� = 𝑠𝑖𝑔𝑛(𝑓(𝑧)) = 𝑠𝑖𝑔𝑛(𝑤1. 𝑧 + 𝑏 ) (13) 

 

Where : 

• 𝑤 is the weight vector of the SVM 

• 𝑧 = (𝑃(𝑌1|𝑋), 𝑃(𝑌2|𝑋)) is a feature vector 

consisting of  Naive Bayes posterior probabilities 

• 𝑏 is the bias of the SVM. 

• 𝑓(𝑧)  determine which class the sample belongs 

to: 

▪ If 𝑓(𝑧) > 0, then the sample is predicted as 𝑌1 

(positive class). 

▪ If 𝑓(𝑧) ≤ 0, then the sample is predicted as 𝑌2 

(negative class). 

 

4.2.3 Combination Formula of SVM and Naive 

Bayes 

The integration of Naive Bayes posterior probabilities 

into the SVM results in the following combination 

formula: 

𝑓(𝑧) = 𝑤1. 𝑃(𝑌1|𝑋) +  𝑤2. 𝑃(𝑌2|𝑋) + 𝑏 (14) 

Input to SVM: 𝑃(𝑌1|𝑋) and 𝑃(𝑌2|𝑋) are the 

posterior probabilities.  

 

4.2.4 Margin Optimization in SVM 

The Support Vector Machine (SVM) optimizes the 

margin between classes 𝑌1 and 𝑌2 by addressing the 

subsequent optimization problem: 
𝑚𝑖𝑛
𝑤, 𝑏

 
1

2
 ‖𝑤‖2  

with condition  

𝑌𝑖(𝑤⊤𝑧𝑖 + 𝑏) ≥ 1 ∀𝑖 (16) 

 

Where: 

▪ 𝑌1 is the original class label of the 𝑖 sample (1 

for 𝑌1, -1 for 𝑌2). 

▪ 𝑧𝑖 = [𝑃(𝑌1|𝑋𝑖), 𝑃(𝑌2|𝑋𝑖)] is the feature vector 

from Naive Bayes for the 𝑖 sample. 

 

4.2.5 Final Decision 

The ultimate prediction is ascertained by the decision 

function 𝑓(𝑧), wherein Naive Bayes and SVM operate 

in concert: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

= max ( 𝑃(𝑌) ∑(𝑃(𝑋𝑖|𝑌) 𝑅(𝑖|𝑌))

𝑞

𝑖=1

) 

(17) 

 

 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑌|𝑋) is calculated using 

equation (18): 

 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑌|𝑋)

= max (
𝑃(𝑌) ∑ (𝑃(𝑋𝑖|1)  𝑅(𝑖|𝑌))

𝑞
𝑖=1

𝑃(𝑋)
) 

(18) 

 

 

where 𝑤 is the weight vector, 𝑧 is the feature vector, 

and 𝑏 is the bias 

Upon completion of training, the Naive Bayes 

component calculates the posterior probabilities 

𝑃(𝑌1|𝑋) and 𝑃(𝑌2|𝑋) for a fresh sample 𝑋, which are 

subsequently input into the SVM. The Support Vector 

Machine (SVM) derives the ultimate prediction 

through the decision function: 
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�̂� = 𝑠𝑖𝑔𝑛(𝑓(𝑧))

= 𝑠𝑖𝑔𝑛(𝑤1. 𝑃(𝑌1) ∑(𝑃(𝑋𝑖| 𝑌1)  𝑅(𝑖|𝑌))

𝑞

𝑖=1

+  𝑤2. 𝑃(𝑌2) ∑(𝑃(𝑋𝑖| 𝑌2)  𝑅(𝑖|𝑌))

𝑞

𝑖=1

+ 𝑏) 

(19) 

 

The ultimate SVM decision function is: 

�̂� = 𝑠𝑖𝑔𝑛(𝑓(𝑧))

= 𝑠𝑖𝑔𝑛(𝑤1. 𝑃(𝑌1|𝑋)
+  𝑤2. 𝑃(𝑌2|𝑋) + 𝑏) 

(20) 

 

Where: 

▪ 𝑓(𝑧) is the decision score: the sign of 𝑓(𝑧) 

determines the class assignment. 

▪ 𝑃(𝑌1|𝑋) and 𝑃(𝑌2|𝑋) are posterior 

probabilities from Naive Bayes. 

▪ 𝑤1 and 𝑤2 are the SVM weights. 

▪ 𝑏  is the bias term learned by SVM. 

The class prediction is made by evaluating the sign of 

𝑓(𝑧): 

▪ If 𝑓(𝑧) > 0, the prediction is 𝑌1. 

▪ If 𝑓(𝑧) ≤ 0, the prediction is 𝑌2. 

 

3.2  Data Preprocessing 

3.2.1 Missing Value Detection 

Table 4. Detection of Missing Values in Yeast Dataset 
Attribute Valid Missing Missing 

(%) 

Mcg  1484 0 0 

Gvh  1484 0 0 

Alm  1484 0 0 

Mit  1484 0 0 

Erl  1484 0 0 

Pox  1484 0 0 

Vac  1484 0 0 

Nuc  1484 0 0 

Class 1484 0 0 

 

Table 4 indicates that the analysis of missing values in 

the yeast dataset shows a complete dataset, with no 

missing values in any attributes. Each attribute, 

specifically Mcg, Gvh, Alm, Mit, Erl, Pox, Vac, Nuc, 

and Class, contains a total of 1484 valid entries, with 

no entries recorded as missing. This results in a 0% 

missing value rate for each attribute, signifying that 

the dataset is wholly complete. The 

comprehensiveness of the yeast dataset is a significant 

advantage, ensuring that the data is ready for further 

analysis and modeling without necessitating 

imputation or corrective measures. This reliable data 

quality enhances confidence in the analytical 

outcomes and predictive effectiveness of any models 

developed with this dataset. 

Table 5. Detection of Missing Values in Churn 

Dataset 
Attribute Valid Missing Missing 

(%) 

Call  Failure  3150 0 0 

Complains 3150 0 0 

Subscription  

Length 

3150 0 0 

Charge  Amount 3150 0 0 

Seconds of Use 3150 0 0 

Frequency of use 3150 0 0 

Frequency of 

SMS 

3150 0 0 

Distinct Called 

Numbers 

3150 0 0 

Age Group 3150 0 0 

Tariff Plan 3150 0 0 

Status 3150 0 0 

Age 3150 0 0 

Customer Value 3150 0 0 

Churn 3150 0 0 

 

Table 5 indicates that the analysis of missing values in 

the churn dataset shows no missing data entries for 

any attributes, which is an admirable outcome. Every 

attribute, such as Call Failure, Complaints, 

Subscription Length, Charge Amount, Seconds of 

Use, Frequency of Use, Frequency of SMS, Distinct 

Called Numbers, Age Group, Tariff Plan, Status, Age, 

Customer Value, and Churn, comprises 3150 valid 

entries. This yields a 0% incidence of missing values 

across all attributes. The comprehensive dataset 

indicates a high degree of data integrity, since the lack 

of missing values obviates the necessity for data 

imputation or corrections. The completeness of data is 

essential for performing comprehensive analysis and 

developing predictive models, guaranteeing that the 

insights obtained are grounded in a solid foundation 

and improving the dependability of conclusions 

related to customer behavior and churn determinants. 

 

3.3 Data Transformation 

Table 6. Data Transformation of the Yeast Dataset 

Attribute 
Type data Before 

Transformation 

Type Data After 

Transformation 

Mcg  float64 Category 

Gvh  float64 Category 

Alm  float64 Category 

Mit  float64 Category 

Erl  float64 Category 

Pox  float64 Category 

Vac  float64 Category 

Nuc  float64 Category 

Class float64 Category 

 

Table 6 displays the outcomes of the Yeast Dataset 

Transformation. The conversion of the yeast dataset 



International Journal of Computer and Information System (IJCIS) 
Peer Reviewed – International Journal 
Vol        : Vol. 06, Issue 01, January 2025 
e-ISSN  : 2745-9659 
https://ijcis.net/index.php/ijcis/index 
 

Journal IJCIS homepage - https://ijcis.net/index.php/ijcis/index  Page 38 

was essential for facilitating posterior probability 

calculations and correlation analysis, as it entailed 

changing several characteristics from float64 to 

Category type. Initially, qualities such as Mcg, Gvh, 

Alm, Mit, Erl, Pox, Vac, Nuc, and Class were denoted 

as continuous numerical values, potentially distorting 

their category essence in subsequent analysis. 

Transforming these features into categorical data types 

enables the analysis to effectively analyze and manage 

the interactions among various classes without 

supposing a linear relationship, which is typical with 

continuous variables. This change is crucial for 

computing posterior probabilities, as the models must 

regard these attributes as discrete categories instead of 

continuous scales. Furthermore, categorizing the data 

improves correlation analysis by ensuring the 

statistical methods employed are suitable for 

categorical data, facilitating the detection of 

significant connections among various yeast features. 

This data transformation enhances the dataset for 

efficient statistical modeling and guarantees precise 

outcomes in posterior probability and correlation 

calculations. 

 

Table 7. Data Transformation of the Churn Dataset 

Attribute 
Type data Before 

Transformation 

Type Data After 

Transformation 

Call  Failure Int64 Category 

Complains Int64 Category 

Subscription  

Length 

Int64 Category 

Charge  

Amount 

Int64 Category 

Seconds of 

Use 

Int64 Category 

Frequency 

of use 

Int64 Category 

Frequency 

of SMS 

Int64 Category 

Distinct 

Called 

Numbers 

Int64 Category 

Age Group Int64 Category 

Tariff Plan Int64 Category 

Status Int64 Category 

Age Int64 Category 

Customer 

Value 

float64 Category 

Churn Int64 Category 

 

Table 7 displays the outcomes of the churn dataset 

transformation. The conversion of the churn dataset 

was essential for further probability calculations and 

correlation analysis, requiring the transformation of 

several properties from their original integer (Int64) 

and floating-point (float64) types into categorical 

kinds. Initially, qualities such as Call Failure, 

Complaints, and Subscription Length were denoted as 

integer values, potentially suggesting a numerical 

relationship that does not adequately convey their 

category essence. Transforming these attributes into 

categorical types enhances the dataset's alignment 

with the intended analysis, enabling each feature to be 

regarded as a discrete category instead of a continuous 

variable. This is especially crucial for posterior 

probability estimation, as categorical data can yield 

more explicit insights regarding churn likelihood 

based on characteristics like Age Group or Tariff Plan, 

devoid of the false connotations of numerical scales. 

Moreover, the transformation improves correlation 

analysis by allowing the examination of correlations 

between categorical variables, so permitting a more 

significant interpretation of how various features 

interact and affect customer churn. This data 

transformation enhances the dataset for efficient 

statistical modeling, guaranteeing precise outcomes in 

posterior probability and correlation analyses about 

customer behavior. 

 

3.4 Performance SVM With Imbalanced Dataset  

 

The results of performing SVM with an imbalanced 

dataset are displayed in Table 8, Figure 3, Figure 4, 

Table 9, Figure 5, and Figure 6. The performance 

evaluation include metrics such as accuracy, precision, 

recall, and FI-score. 

Table 8. SVM Classification Report on Imbalanced 

Yeast Dataset 
 

Precision Recall 
f1-

score 
support 

-1 0.74 0.96 0.84 1055 

1        0.67 0.19 0.29 429 

accuracy                              0.74 1484 

macro 

avg        

0.71 0.57 0.57 1484 

weighted 

avg        

0.72 0.74 0.68 1484 

 

Table 8 indicates that the SVM model's accuracy on 

the unbalanced yeast dataset is 73.79%, which is 

suboptimal owing to the class imbalance. The majority 

class (-1) has 1055 instances, whereas the minority 

class (1) contains merely 429, resulting in a bias in the 

model towards the majority class. The model has 

commendable performance for the majority class, 

achieving a precision of 0.74, a high recall of 0.96, 

and a robust F1-score of 0.84. Nonetheless, the 

performance for the minority class is significantly 

inferior, with a precision of 0.67 and a notably low 

recall of 0.19, culminating in a subpar F1-score of 

0.29. 
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Figure 3. SVM Confusion Matrix on Imbalanced 

Yeast Dataset 

 

The confusion matrix in Figure 3 reveals numerous 

False Negatives for the minority class, signifying the 

model's difficulty in recognizing these situations. 

 

 
Figure 4: SVM Scatter Plot on Imbalanced Yeast 

Dataset 

 

The scatter plot in Figure 4 demonstrating evident 

separation for the majority class while exhibiting less 

significant separation for the minority class, resulting 

in misclassifications. The macro average indicates a 

precision of 0.71 and a recall of 0.57, illustrating the 

imbalance, but the weighted average shows a modest 

improvement although still underscores the challenges 

associated with the minority class.The imbalance 

yields marginally improved scores; however, the low 

recall for class 1 persists as a significant concern. 

 

Table 9. SVM Classification Report on Imbalanced 

Churn Dataset 
 precision Recall f1-

score    

support 

-1 0.84       1.00       0.91       2654 

1        0.00       0.00       0.00        495 

accuracy                              0.84       3149 

macro avg        0.42       0.50       0.46       3149 

weighted 

avg        

0.71       0.84       0.77       3149 

Table 9  illustrates that the performance of the SVM 

model on the unbalanced churn dataset underscores 

the problem of class imbalance, achieving an overall 

accuracy of 84.28%. Nonetheless, this accuracy is 

deceptive owing to the significant disparity between 

the majority class (-1, non-churn) including 2654 

instances and the minority class (1, churn) consisting 

of 495 instances. The model exhibits strong 

performance for the majority class, attaining a 

precision of 0.84, a recall of 100%, and an F1-score of 

0.91, indicating it accurately detects almost all non-

churners. Nevertheless, the confusion matrix in Figure 

5 indicates that the model erroneously categorizes all 

churn events as non-churn, yielding a recall of 0% for 

the minority class. 

 

 
 

Figure 5: SVM Confusion Matrix on Imbalanced 

Churn Dataset 

 

 

 
Figure 6: SVM Scatter Plot on Imbalanced Churn 

Dataset 

 

The scatter figure underscores this, Figure 6 indicating 

that the decision boundary favors the majority class, 

resulting in numerous churn events being 

misclassified. The model is unable to predict churners, 

yielding a recall and F1-score of 0 for class 1. The 
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macro average scores (accuracy 0.42, recall 0.50, F1-

score 0.46) underscore the model's inadequate 

generalization across both classes, however the 

weighted average F1-score of 0.77 indicates robust 

performance on the majority class, concealing its 

deficiencies with the minority class. 

 

3.5  Performance PC-SVM With Imbalanced 

Dataset 

The results of performance PC-SVM with an 

imbalanced dataset are presented Table 10, Figure 7, 

Figure 8, Table 11, Figure 9, and Figure 10. The 

performance metrics assessed include accuracy, 

precision, recall, and F1-score. 

  

Table 10.  PC-SVM Classification Report on 

Imbalanced Yeast Dataset 

 precision Recall 
f1-

score 
support 

-1 1.00 1.00 1.00 1423 

1        1.00 1.00 1.00 61 

accuracy                              1.00 1484 

macro avg        1.00 1.00 1.00 1484 

weighted 

avg        

1.00 1.00 1.00 1484 

 

Table 10 illustrates that the PC-SVM model exhibits 

outstanding performance on the unbalanced yeast 

dataset, with a flawless accuracy of 100%. The 

algorithm accurately predicted all cases without errors, 

showcasing its efficacy and dependability in 

classifying the yeast data. The confusion matrix 

validates this robust performance, since all cases from 

both classes (-1 and 1) are accurately categorized, with 

no errors in categorization. The matrix in Figure 7 

exclusively displays True Positives and True 

Negatives, indicating the absence of False Positives 

and False Negatives. This signifies that the PC-SVM 

model can effectively differentiate between the two 

classes, despite the class imbalance (61 instances of 

class 1 compared to 1423 instances of class -1). 

 

 
Figure 7: PC-SVM Confusion Matrix on Imbalanced 

Yeast Dataset 

 
Figure 8: PC-SVM Scatter Plot on Imbalanced Yeast 

Dataset 

 

Figure 8 a scatter plot of the results would probably 

exhibit a distinct demarcation between the two classes, 

with no overlap. examples of class -1 would create a 

dense cluster, whilst examples of class 1 would be 

distinctly identifiable, hence enhancing the model's 

capacity to address class imbalance and accurately 

categorize both categories. The classification report 

indicates flawless results for both classes, with 

precision, recall, and F1-score all at 1.00. The model 

exhibits complete accuracy in its predictions, devoid 

of false positives or false negatives, and maintains an 

ideal equilibrium between precision and recall. The 

support values indicate 1423 occurrences for class -1 

and 61 for class 1. Notwithstanding the imbalance, the 

PC-SVM approach effectively manages the gap, 

attaining flawless categorization for both classes. The 

macro and weighted average scores are also 1.00, 

further emphasizing the model's uniform performance 

throughout the dataset. This exceptional performance 

illustrates the efficacy of PC-SVM in managing 

imbalanced datasets for classification tasks. 

 

Table 11. PC-SVM Classification Report on 

Imbalanced Churn Dataset 
 precision Recall f1-

score    

support 

-1 1.00 1.00 1.00 1867 

1        1.00 1.00 1.00 1283 

accuracy                              1.00 3150 

macro 

avg        

1.00 1.00 1.00 3150 

weighted 

avg        

1.00 1.00 1.00 3150 

 

Table 11 illustrates that the PC-SVM model exhibits 

outstanding performance on the imbalanced churn 

dataset, with flawless accuracy of 100%. The model 

precisely classified each case in the dataset, 

differentiating between the two classes without errors, 

despite the class imbalance. 
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Figure 9: PC-SVM Confusion Matrix on Imbalanced 

Churn Dataset 

 

The confusion matrix in Figure 9 validates this, 

indicating that all cases for both groups (-1 for non-

churned customers and 1 for churned customers) were 

accurately identified. The absence of false positives 

and false negatives illustrates the model's robust 

performance and capacity to manage class imbalance. 

 

 
 

Figure 10: PC-SVM Scatter Plot on Imbalanced Yeast 

Dataset 

 

Figure 10 a scatter plot would likely exhibit a clear 

delineation between the two classes, with distinct 

clusters for churned and non-churned clients. The 

absence of overlap would visually validate that the 

model correctly recognized all churned consumers 

without misclassifying any non-churned individuals, 

hence reinforcing the model's efficacy. The 

classification report verifies flawless outcomes, with 

precision, recall, and F1-scores all at 1.00 for each 

class. This signifies that the model accurately 

identified all true positives while evading both false 

positives and false negatives, achieving an impeccable 

equilibrium between precision and recall. The support 

data indicate 1867 instances of class -1 and 1283 

instances of class 1, reflecting a little imbalance. 

Nonetheless, the PC-SVM model accurately 

categorized all occurrences, demonstrating its 

proficiency in managing imbalanced datasets. The 

macro and weighted averages are both 1.00, indicating 

uniform performance across the two classes. This 

remarkable performance underscores the PC-SVM's 

capability as an effective instrument for categorizing 

imbalanced datasets, including customer churn 

prediction. 

 

VI. CONCLUSION 

This study proposes a hybrid approach to improving 

Support Vector Machine (SVM) classification 

performance on imbalanced datasets by integrating 

posterior probability and correlation analysis. 

Imbalanced data often hampers the accuracy of 

traditional classifiers, as minority classes are 

underrepresented and frequently misclassified. The 

introduced Posterior Probability and Correlation-SVM 

(PC-SVM) method enhances minority class detection 

by combining posterior probabilities, which measure 

class likelihood, with attribute correlation coefficients 

to weigh feature importance. The study demonstrates 

the effectiveness of the PC-SVM model on the Yeast 

and Churn datasets, achieving significantly improved 

accuracy, precision, recall, and F1-scores for minority 

classes. This approach highlights the potential of 

fusion techniques in addressing the challenges posed 

by imbalanced datasets, providing a robust framework 

for enhancing classification performance. 

 

The hybrid PC-SVM model integrating posterior 

probability and correlation techniques demonstrates 

exceptional performance in addressing class 

imbalance challenges. By incorporating attribute 

weighting through correlation analysis and 

transforming input features with posterior 

probabilities, the method effectively enhances the 

sensitivity and accuracy of SVM models for minority 

classes. Experimental results on the Yeast and Churn 

datasets highlight the model's ability to achieve 

balanced classification metrics across all classes, 

resolving the limitations of traditional SVMs. This 

study underscores the importance of tailored 

techniques in machine learning for tackling dataset 

imbalances, paving the way for more accurate and fair 

predictive modeling. 
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