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Abstract—This paper presents a new approach to improve multiple choice and defect detection in cross-border 

shipments using deep learning (DRL). The design process involves the integration of real-time data from multiple 

sources to create comprehensive transportation models, including route optimization, cost reduction, and poor research 

methods. The DRL project is intended to use a multi-agent design to manage complex decision-making processes in a 

dynamic logistics environment. The hybrid anomaly detection system combines statistics with machine learning 

techniques to identify and respond to network disruptions. The system's performance was validated using a database 

including 185,432 shipment records collected over 24 months across the Asia-Pacific transportation system. The 

experimental results show that the proposed method has achieved 94.5% correct value in choosing the right path and 

45% reduction in processing time compared to traditional methods. The negative detection antibody maintains a 96.2% 

true positive rate with a 1.8% false positive rate. The system's analysis shows that the growth of the needs in the 

calculation of the growth in the network, indicating the use of good resources in the large deployment. This research 

supports the state-of-the-art in cross-border business optimization by providing solutions that integrate real-time 

optimization methods with negative detection and response mechanisms. 

Keywords: Deep Reinforcement Learning, Cross-border Logistics, Multimodal Transportation Optimization, Anomaly 

Detection 

 

I. INTRODUCTION 

1.1. Research Background and Significance 

The rapid development of cross-border e-commerce 

has brought unprecedented challenges and 

opportunities for transportation in the transportation 

industry. The global logistics industry has 

experienced significant growth, with the global 

economy increasing exponentially[1]. Cross-border 

business involves easy transportation, many 

stakeholders, and different modes of transportation, 

making the process of improving efficiency a 

challenge for service providers. logistics service[2]. 

The logistics system plans the attack to meet the 

requirements of modern transportation across the 

border. These events are characterized by changes 

in traffic conditions, customs uncertainty, and 

various related obstacles. The integration of 

multimodal transport further affects the 

optimization process, requiring sophisticated 

decision-making processes to manage real-time 

adjustments and fault detection[3].  

The advancement of advanced technology, 

especially deep learning (DRL), has opened up new 

possibilities to solve complex logistics optimization 

problems. DRL's ability to learn the right rules by 

interacting with the environment makes it 

particularly suitable for handling the dynamics and 

uncertainties of cross-border logistics[4]. The 

combination of DRL with the development of 

multimodal transport presents a good way to 

improve the efficiency and reliability of 

cross-border operations. 

1.2. Literature Review 

Previous research in cross-border logistics 

optimization has primarily focused on static route 

planning and single-modal transportation scenarios. 
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Liu et al. proposed an improved deep reinforcement 

learning approach for intelligent logistics supply 

chain transportation decision models, demonstrating 

the potential of DRL in logistics optimization[5]. 

Their work established a framework for 

incorporating real-time environmental information 

and dynamic decision-making capabilities. 

In the domain of multimodal transportation, Jiang 

and Wu developed an optimization algorithm for 

logistics distribution paths based on deep learning, 

addressing the challenges of route selection in 

complex urban environments[6]. Their research 

provided valuable insights into the integration of 

multiple transportation modes and the consideration 

of various operational constraints. 

Recent studies have investigated the use of 

reinforcement learning in logistics network 

optimization. Work by Li et al. on the optimization 

of cross-border e-commerce logistics delivery 

networks based on genetic neural networks 

emphasized the importance of adaptive learning 

mechanisms in handling dynamic logistics 

situations[7]. Their research shows significant 

improvements in distribution and cost reduction. 

The integration of fault detection in logistics 

systems is receiving more attention. Lu and Wu's 

research on information delivery optimization using 

multi-agent learning has presented a framework for 

detecting and responding to conflicts[8]. Their work 

emphasized the importance of real-time monitoring 

and updating processes in reliability management. 

1.3. Research Content and Innovation 

This research proposes a novel approach to 

cross-border logistics optimization by integrating 

deep reinforcement learning with multimodal 

transportation routing and real-time anomaly 

detection. The key innovations include: 

A comprehensive multimodal transportation 

network model that captures the complex 

interactions between different transportation modes, 

customs clearance processes, and operational 

constraints in cross-border logistics. The model 

incorporates real-time data from multiple sources 

and considers various uncertainty factors affecting 

route optimization. 

An advanced deep reinforcement learning 

framework specifically designed for cross-border 

logistics optimization. The framework employs a 

multi-agent architecture to handle different aspects 

of the transportation process, including route 

selection, mode switching, and anomaly response. 

The learning mechanism is enhanced with custom 

reward functions that consider both operational 

efficiency and system reliability. 

A real-time anomaly detection system that 

continuously monitors the transportation network 

for potential disruptions and irregularities. The 

system utilizes advanced pattern recognition 

algorithms to identify anomalies in transportation 

operations, customs clearance processes, and 

infrastructure conditions[9]. The integration of 

anomaly detection with route optimization enables 

proactive adjustments to transportation plans. 

An adaptive response mechanism that coordinates 

route optimization and anomaly handling. The 

mechanism leverages the learned policies from the 

DRL framework to generate alternative routes when 

anomalies are detected[10]. The response system 

considers multiple factors including time 

constraints, cost implications, and service level 

requirements. 

The research addresses critical gaps in existing 

literature by providing a comprehensive solution 

that combines real-time optimization, multimodal 

transportation, and anomaly detection. The 

proposed approach advances the state-of-the-art in 

cross-border logistics management by introducing 

intelligent decision-making capabilities that can 

adapt to dynamic operational conditions and 

respond effectively to disruptions[11]. 

The practical significance of this research extends 

to multiple stakeholders in the cross-border 

logistics industry. For logistics service providers, 

the proposed system offers enhanced operational 
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efficiency and reliability. For customs authorities, 

the anomaly detection capabilities provide 

improved visibility and control over cross-border 

movements[12]. For end customers, the optimization 

of transportation routes results in more reliable 

delivery times and reduced costs. 

 

II. MULTIMODAL TRANSPORTATION NETWORK 

MODELING FOR CROSS-BORDER LOGISTICS 

2.1. Cross-border Logistics Network 

Characteristics Analysis 

Cross-border logistics networks exhibit complex 

characteristics with multiple transportation modes, 

diverse regulatory requirements, and varying 

infrastructure conditions across different regions[13]. 

Based on historical data analysis from major 

cross-border logistics routes in Asia-Pacific region, 

the key network characteristics are quantified in 

Table 1. 

 

Table 1. Key Characteristics of Cross-border 

Logistics Networks 

Network Parameter Value 

Range 

Average 

Value 
Node Density 0.15-0.45 0.32 

Path Redundancy 2.3-5.8 3.6 

Modal Integration 

Index 

0.65-0.95 0.78 

Cross-border Points 8-25 15 

 

The dynamic nature of cross-border networks is 

reflected in the temporal variations of network 

parameters, as shown in Table 2. 

 

Table 2. Temporal Variations in Network 

Parameters 

Time 

Period 

Network 

Utilization 

Congestion 

Index 

Delay 

Factor 

Peak 

Hours 
85%-95% 0.75-0.92 1.8-2.5 

Off-peak 45%-65% 0.25-0.45 1.1-1.4 

Holiday 

Season 
90%-98% 0.85-0.98 2.2-3.0 

Normal 

Period 
60%-80% 0.40-0.65 1.3-1.8 

 

 

Figure 1. Cross-border Logistics Network 

Topology Analysis 

 

This visualization represents a complex network 

topology analysis of cross-border logistics routes. 

The graph employs a force-directed layout 

algorithm with nodes representing logistics hubs 

and edges indicating transportation connections. 

Node sizes are proportional to their throughput 

capacity, while edge thicknesses represent traffic 

volumes. The color gradient from blue to red 

indicates congestion levels. 

The analysis reveals distinct clustering patterns 

around major logistics hubs, with interconnected 

subnetworks forming resilient transportation 

corridors. The network demonstrates scale-free 

properties with power-law degree distribution, 

indicating robust connectivity patterns typical of 

efficient logistics networks. 

 

2.2. Multimodal Transportation Route Modeling 

The modeling of multimodal transportation routes 

incorporates multiple transportation modes and 

their interconnections. The modal selection matrix 

is presented in Table 3. 
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Table 3. Modal Selection Matrix 

Transportati

on Mode 

Capacity 

(TEU/da

y) 

Cost 

($/km) 

Speed 

(km/h

) 

Reliabili

ty Index 

Sea Freight 
5000-800

0 

0.15-0.

25 
25-35 0.92 

Rail 

Transport 

2000-350

0 

0.35-0.

55 
60-80 0.88 

Road 

Transport 
500-1000 

0.75-1.

25 
70-90 0.85 

Air Freight 100-300 
4.50-6.

50 

800-90

0 
0.95 

 

 

Figure 2. Multimodal Route Optimization 

Framework 

 

The visualization presents a comprehensive 

framework for multimodal route optimization. The 

multi-layered diagram shows the interaction 

between different transportation modes, with 

parallel streams representing simultaneous route 

options. The decision points are indicated by 

diamond-shaped nodes, while modal transfer points 

are shown as circular nodes. The optimization 

process is represented by gradient-colored paths 

indicating the calculated efficiency scores. 

The framework illustrates the complex 

decision-making process in multimodal 

transportation selection, incorporating real-time 

data inputs and dynamic route adjustments based on 

network conditions. 

 

2.3. Transportation Time and Cost Modeling 

The time-cost modeling incorporates various 

operational parameters and constraints, as detailed 

in Table 4. 

 

Table 4. Time-Cost Model Parameters 

Parameter 

Type 
Variable Range 

Weight 

Factor 

Impact 

Level 

Fixed 

Costs 
$1000-5000/trip 0.3-0.4 High 

Variable 

Costs 
$2-8/km 0.4-0.5 Medium 

Time 

Delays 
2-24 hours 0.2-0.3 High 

Transfer 

Costs 
$200-800/transfer 0.1-0.2 Medium 

 

 

Figure 3. Time-Cost Optimization Surface Plot 

 

This three-dimensional visualization represents the 

relationship between transportation time, cost, and 

route efficiency. The x-axis represents time units, 

the y-axis represents cost units, and the z-axis 

represents the optimization score. The surface plot 

is generated using cubic spline interpolation, with 

color gradients indicating optimization levels. 

Contour lines project optimal operating regions 

onto the time-cost plane. 
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The visualization reveals critical trade-off points 

and optimal operating zones within the time-cost 

space, providing valuable insights for route 

planning and optimization. 

 

2.4. Anomaly State Identification and Definition 

Anomaly states in cross-border logistics are 

classified based on multiple criteria and thresholds, 

as shown in Table 5. 

 

Table 5. Anomaly Classification Matrix 

Anomaly 

Type 

Detection 

Threshold 

Impact 

Rating 

Response 

Time 

Route 

Disruption 

> 30% 

deviation 
Critical < 15 min 

Delay 

Events 
> 2 hours High < 30 min 

Cost 

Variance 
> 15% Medium < 60 min 

Capacity 

Issues 

> 25% 

overflow 
High < 45 min 

The anomaly detection framework incorporates 

both deterministic and probabilistic approaches to 

identify and classify network irregularities. The 

integration of real-time monitoring systems with 

historical pattern analysis enables proactive 

anomaly detection and response mechanisms. 

Machine learning algorithms process multivariate 

time series data to detect anomalies across different 

network parameters, considering spatial and 

temporal correlations in transportation patterns. 

The modeling framework establishes a 

comprehensive foundation for implementing deep 

reinforcement learning algorithms in subsequent 

optimization processes. The integration of network 

characteristics, multimodal routing options, 

time-cost considerations, and anomaly detection 

creates a robust platform for developing intelligent 

transportation solutions in cross-border logistics 

contexts[14][15]. 

III. DEEP REINFORCEMENT LEARNING-BASED 

ROUTE OPTIMIZATION METHOD 

 

3.1. Problem Formalization and Mathematical 

Modeling 

The cross-border logistics route optimization 

problem is formulated as a Markov Decision 

Process (MDP) with state space S, action space A, 

and reward function R. The state transition 

probability matrix P captures the dynamics of the 

logistics network, as detailed in Table 6. 

Table 6. MDP Components in Route Optimization 

Component Dimension Description 
Value 

Range 

State Space N×M 
Location-Time 

Matrix 

[0, 

1]^(N×M) 

Action 

Space 
K 

Available 

Routes 
{1, ..., K} 

Reward 

Function 
1 

Performance 

Metric 
[-1, 1] 

Discount 

Factor 
1 

Future Reward 

Weight 

[0.85, 

0.95] 

The mathematical formulation incorporates 

multiple constraints and objectives, represented in 

the optimization matrix shown in Table 7. 

 

Table 7. Optimization Constraints Matrix 

Constraint 

Type 

Mathematical 

Form 

Boundary 

Conditions 

Priority 

Level 

Time 

Window 
t_ij ≤ T_max 

T_max ∈ 

[24h, 72h] 
High 

Capacity c_ij ≤ C_max 
C_max ∈ 

[80%, 95%] 
Medium 

Cost ∑c_ij ≤ B_total 
B_total ∈ [k, 

2k] 
High 

Modal 

Balance 
∑m_i = 1 m_i ∈ [0, 1] Low 
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Figure 4. Deep Reinforcement Learning 

State-Action Mapping Architecture 

 

This visualization presents the neural network 

architecture for state-action mapping in the DRL 

framework. The diagram shows multiple 

convolutional layers processing spatial information, 

followed by fully connected layers for decision 

making. The network architecture incorporates skip 

connections and attention mechanisms, with layer 

dimensions indicated by node sizes and connection 

strengths shown through line thickness. 

The architectural design demonstrates the 

integration of spatial and temporal features through 

parallel processing streams, culminating in a policy 

output layer that generates probabilistic action 

distributions. 

3.2. Deep Reinforcement Learning Framework 

Design 

The DRL framework integrates multiple neural 

network components optimized for different aspects 

of the logistics problem, as outlined in Table 8. 

 

Table 8. Neural Network Architecture Components 

Layer 

Type 
Units Activation 

Input 

Shape 

Output 

Shape 

Conv2D 64 ReLU 
(N, M, 

C) 
(N, M, 64) 

LSTM 128 tanh (T, F) (T, 128) 

Dense 256 ReLU (128,) (256,) 

Output K Softmax (256,) (K,) 

 

Figure 5. Multi-head Attention Mechanism for 

Route Selection 

 

The visualization depicts the multi-head attention 

mechanism used in the route selection process. 

Multiple parallel attention heads are shown 

processing different aspects of the input state, with 

weighted connections indicating attention scores. 

The color intensity represents attention weights, 

while line patterns indicate different types of 

relationships captured by each attention head. 

The attention mechanism enables the model to 

focus on relevant features of the state space while 

maintaining global context awareness for optimal 

route selection. 

3.3. Reward Function Design and Optimization 

The reward function incorporates multiple 

performance metrics weighted according to their 

relative importance, as detailed in Table 9. 

Table 9. Reward Function Components 

Metric Weight 
Calculation 

Method 

Update 

Frequency 

Time 

Efficiency 
0.35 t_opt/t_actual Per Step 

Cost 

Reduction 
0.30 c_base - c_actual 

Per 

Episode 

Route 

Stability 
0.20 var(route_changes) Per Batch 

Modal 

Efficiency 
0.15 modal_utilization 

Per 

Episode 
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Figure 6. Reward Surface Analysis Plot 

The three-dimensional visualization shows the 

relationship between different reward components 

and overall performance. The x and y axes 

represent primary reward metrics, while the z-axis 

shows the composite reward value. Surface coloring 

indicates stability regions, with contour lines 

marking iso-reward boundaries. 

The analysis reveals optimal operating regions 

where multiple reward components achieve 

balanced performance, guiding the learning process 

toward stable and efficient solutions. 

3.4. Multi-agent Collaborative Decision-making 

Mechanism 

The multi-agent system employs a distributed 

architecture with coordinated decision-making 

protocols, as structured in Table 10. 

Table 10. Multi-agent Coordination Parameters 

Parameter 
Value 

Range 

Coordination 

Level 

Update 

Method 

Agent Count 5-20 High Dynamic 

Communication 

Bandwidth 

100-500 

kb/s 
Medium Adaptive 

Consensus 

Threshold 
0.75-0.95 High Iterative 

Response Time 
50-200 

ms 
Critical Real-time 

The coordination mechanism enables efficient 

information sharing and decision synchronization 

across multiple agents operating in different 

segments of the logistics network. Each agent 

maintains local observations while contributing to 

global optimization objectives through structured 

communication protocols and shared value 

functions. The system employs a hierarchical 

decision-making structure that balances local 

autonomy with global coordination requirements. 

The integration of these components creates a 

comprehensive DRL framework capable of 

handling complex cross-border logistics 

optimization tasks. The system demonstrates 

adaptive learning capabilities through continuous 

interaction with the environment, while maintaining 

stable performance across various operating 

conditions through structured reward mechanisms 

and coordinated multi-agent decision-making 

processes[16][17]. 

 

IV. ANOMALY DETECTION AND RESPONSE 

MECHANISM 

4.1. Multi-source Data Fusion and Feature 

Extraction 

The multi-source data fusion framework integrates 

data from diverse sources across the cross-border 

logistics network, incorporating real-time sensors, 

historical databases, and external information 

systems[18]. Table 11 presents the data source 

characteristics and integration parameters. 

Table 11. Data Source Integration Matrix 

Data 

Source 

Update 

Frequency 

Data 

Format 

Reliability 

Index 

IoT 

Sensors 

10-30 

seconds 

Binary 

Stream 
0.95 

GPS 

Tracking 
5-15 minutes 

Coordinate 

Points 
0.98 

Weather 

Data 

30-60 

minutes 
JSON 0.92 

Traffic 

Systems 
1-5 minutes XML 0.94 
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The feature extraction process employs advanced 

dimensionality reduction techniques, with 

performance metrics shown in Table 12. 

 

Table 12. Feature Extraction Performance Metrics 

Method 
Dimensionality 

Reduction 

Computation 

Time 

Information 

Retention 

PCA 85% 2.5 ms 0.92 

Autoencoder 90% 3.8 ms 0.95 

t-SNE 82% 4.2 ms 0.88 

UMAP 88% 3.1 ms 0.93 

 

 

Figure 7. Multi-source Data Fusion Architecture 

 

This visualization represents the hierarchical data 

fusion architecture. The diagram shows multiple 

input streams converging through various 

processing layers, with different colors representing 

different data types. Edge thickness indicates data 

flow volume, while node size represents processing 

capacity at each fusion point. The visualization 

includes real-time performance metrics and data 

quality indicators. 

The architecture demonstrates the complex 

interactions between different data sources and 

processing modules, highlighting the system's 

ability to maintain data integrity while performing 

real-time fusion operations. 

 

4.2. Real-time Anomaly Pattern Recognition 

Algorithm 

The anomaly pattern recognition system employs a 

hybrid approach combining statistical and machine 

learning methods. Table 13 outlines the detection 

performance across different anomaly types. 

 

Table 13. Anomaly Detection Performance Matrix 

Anomaly 

Type 

Detection 

Rate 

False 

Positive 

Rate 

Response 

Time 

Route 

Deviation 
95.3% 2.1% 1.2s 

Delay 

Patterns 
93.8% 2.8% 0.8s 

Cost 

Anomalies 
94.6% 1.9% 1.5s 

Capacity 

Issues 
96.2% 1.7% 0.9s 

 

Figure 8. Anomaly Pattern Recognition Network 

 

The visualization presents a complex neural 

network architecture specifically designed for 

anomaly detection. Multiple parallel processing 

streams handle different aspects of the input data, 

with specialized layers for temporal and spatial 

pattern recognition. The network includes attention 

mechanisms and skip connections, with 

performance metrics displayed at key processing 

nodes. 

The diagram illustrates the flow of information 
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through various processing stages, demonstrating 

how different features are combined to identify 

potential anomalies in real-time. 

4.3. Dynamic Route Adjustment Strategy 

The dynamic route adjustment system implements 

adaptive strategies based on detected anomalies and 

network conditions. Table 14 presents the 

adjustment strategy parameters. 

 

Table 14. Route Adjustment Strategy Parameters 

Parameter 
Adjustment 

Range 

Update 

Frequency 

Priority 

Level 

Time 

Window 
±30% Real-time High 

Cost 

Threshold 
±15% Per event Medium 

Modal 

Switch 
2-5 options 

Per 

detection 
High 

Path 

Redundancy 

1-3 

alternatives 
Continuous Critical 

 

Figure 9. Dynamic Route Optimization Network 

 

This visualization shows the dynamic route 

optimization process through a complex network 

diagram. The graph includes multiple layers 

representing different transportation modes and 

routes, with edge weights indicating current 

utilization levels and node colors showing 

congestion status. Animation frames demonstrate 

how routes are dynamically adjusted in response to 

detected anomalies. 

The network visualization incorporates real-time 

performance metrics and decision boundaries, 

providing insights into the system's adaptive 

behavior under various conditions. 

 

4.4. Early Warning and Response Mechanism 

Design 

The early warning system incorporates multiple 

alert levels and response protocols, structured 

according to the severity and type of detected 

anomalies. Table 15 outlines the response 

mechanism framework. 

 

Table 15. Response Protocol Matrix 

Alert 

Level 

Trigger 

Conditions 

Response 

Time 

Action 

Protocol 

Critical 
Multiple 

failures 

< 30 

seconds 

Full 

rerouting 

High Single failure 
< 2 

minutes 

Partial 

adjustment 

Medium 
Performance 

degradation 

< 5 

minutes 
Monitoring 

Low 
Minor 

deviation 

< 15 

minutes 
Logging 

The response mechanism integrates automated 

decision-making with human oversight, employing 

a hierarchical structure for escalation and resolution. 

The system maintains continuous monitoring of 

network conditions while implementing predefined 

response protocols based on alert severity levels. 

The integration of anomaly detection and response 

mechanisms creates a robust framework for 

maintaining operational stability in cross-border 

logistics networks. The system demonstrates high 

reliability in identifying and responding to various 

types of anomalies while minimizing disruption to 

ongoing operations through intelligent route 

adjustment strategies and coordinated response 

protocols[19]. 
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The combination of multi-source data fusion, 

real-time anomaly detection, dynamic route 

adjustment, and systematic response protocols 

enables effective management of complex logistics 

networks under varying operational conditions[20]. 

The framework provides both preventive and 

reactive capabilities, ensuring sustained 

performance in the face of unexpected events and 

changing network conditions. 

 

V. EXPERIMENTAL VALIDATION 

5.1. Experimental Environment and Dataset 

The experimental validation of the proposed deep 

reinforcement learning-based route optimization 

system was conducted using a comprehensive 

simulation environment built on Python 3.8 with 

TensorFlow 2.4 and PyTorch 1.8. The hardware 

platform consisted of an Intel Xeon E5-2680 v4 

CPU, 128GB RAM, and four NVIDIA Tesla V100 

GPUs with 32GB memory each. The distributed 

computing environment was implemented using 

Docker containers for consistent deployment across 

multiple nodes. 

The dataset encompasses real-world cross-border 

logistics operations data collected over 24 months 

from 2022 to 2024, covering major transportation 

routes between Asia-Pacific regions. The dataset 

includes detailed records of 185,432 shipments 

across multiple transportation modes, with 

comprehensive information about routes, 

timestamps, costs, delays, and anomalies[21]. Table 

16 presents the key characteristics of the 

experimental dataset. 

 

Table 16. Experimental Dataset Characteristics 

Data 

Category 
Volume 

Time 

Span 

Sampling 

Rate 

Route 

Records 
185,432 

24 

months 
5 min 

GPS Traces 
2.8M 

points 

24 

months 
30 sec 

Cost Records 185,432 
24 

months 
Per shipment 

Delay Events 12,453 
24 

months 
Real-time 

The dataset was preprocessed using standardized 

protocols for noise reduction and missing value 

imputation. The data splitting strategy employed a 

70-15-15 ratio for training, validation, and testing 

sets, with stratification based on transportation 

modes and seasonal patterns. 

 

5.2. Algorithm Performance Evaluation 

The performance evaluation of the proposed system 

focused on multiple metrics covering optimization 

efficiency, anomaly detection accuracy, and 

computational resource utilization. Table 17 

presents the comparative performance analysis 

against baseline methods. 

 

Table 17. Performance Comparison with Baseline 

Methods 

Method 

Route 

Optimization 

Time 

Accuracy 
Resource 

Usage 

Proposed 

DRL 
1.2s 94.5% 65% 

Traditional 

RL 
2.8s 88.3% 72% 

Genetic 

Algorithm 
3.5s 85.7% 78% 

Heuristic 

Search 
4.2s 82.1% 45% 

The evaluation metrics demonstrate significant 

improvements in both computational efficiency and 

solution quality. The route optimization component 

achieved a 45% reduction in processing time 

compared to traditional methods, while maintaining 

a 94.5% accuracy rate in optimal route selection. 

The anomaly detection module demonstrated robust 
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performance with a 96.2% true positive rate and a 

1.8% false positive rate across various types of 

network disruptions. 

The scalability analysis revealed linear growth in 

computational requirements with increasing 

network size, indicating efficient resource 

utilization in large-scale deployments. The system 

maintained consistent performance levels under 

varying load conditions, with processing times 

remaining within acceptable bounds even during 

peak operational periods[22]. 

Cross-validation results across different network 

configurations and operational scenarios confirmed 

the robustness of the proposed approach. The 

system demonstrated stable performance across 

diverse transportation modes and network 

conditions, with consistent optimization quality 

maintained across different geographical regions 

and time periods. 
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