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Abstract—Presently available plagiarism detection technologies are primarily restricted to string-level comparisons between potentially 

original texts and suspiciously plagiarized materials. The objective of this research is to enhance the precision of plagiarism 

identification by integrating Natural Language Processing (NLP) methods into current methodologies. Our proposal is an external 

plagiarism detection framework that uses various natural language processing (NLP) approaches to examine a set of original and 

suspicious papers. The techniques not only analyze text strings but also the text's structure, taking text relations into consideration. 

Preliminary findings using a corpus of short paragraphs that have been plagiarized demonstrate that NLP approach increase the 

correctness of current methods. 
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I. INTRODUCTION 

The Internet's ease of sharing information has 

made it more common for people to look for literature 

available online. This has led to more people—

especially in academic domains—replicating ideas or 

works of others without giving due credit. The 

identification of instances of plagiarism is just as vital 

as the prevention of such a problem, which should be 

prioritized for educational reasons. 

Numerous approaches have been developed over 

time to carry out the automatic detection of 

plagiarism. These include tools for the detection of 

natural language text and computer programming 

source code. 

Here our suggested system is a model that is based 

on machine learning. It makes use of Sci-Kit-Learn 

functionalities that are integrated into modules. In 

order to detect plagiarism, our proposed method 

computes many attributes from the programming 

assignments. From the source code, we calculate many 

features like the similarity score, the quantity of 

variables and functions that are underused, etc. Next, 

we use these features to train an xgboost learning 

algorithm, and we compare the outcome with Support 

Vector Machine (SVM). We think that even with 

heavily obfuscated assignments, our features will be 

able to identify plagiarism. On the test set, our model 

achieved 93 percent accuracy using the attributes we 

suggested. 

 

II. EXISTING APPROACHES  

There are various classifications for plagiarism 

detection techniques. Lancaster (2003) states that 

techniques can be categorized according to the type of 

detection methods employed, the accessibility of the 

system, the number of documents the metrics can 

process, and the intricacy of the metrics. It has been 

noted that surface complexity paired measurements 

have been applied more often than highly accurate 

multidimensional metrics with substantial structural 

complexity. This results from the trade-off between 

precision and processing power. Detection jobs can be 

quite time-consuming and labor-intensive, even with 

the aid of powerful computers. The more complex the 

measurements, the more processing power that is 

required. For users who have access to personal 

computers, this is not optimal. 

Although Razvan Rosu[IUJI] used  BERT and 

RoBERTa for plagiarism detection, this technique was 

innovative. They used this technique in hopes that the 

publications that are comparable to the query 

document would be rated more pertinently and 

accurately. 

Their goal was to create a reliable plagiarism 

detection system that can deliver results quickly and 

accurately. The majority of the time, comparing words 

to words is necessary for detecting plagiarism, which 

is laborious to go through a huge document and is 

susceptible to manipulation by substituting synonyms 

for words. The use of deep learning, which goes 

beyond word parsing to comprehend the text, can 

provide fresh insights into plagiarism detection. The 

other method they looked at was GLoVE Pennington 

(2014) in conjunction with TFIDF Ramos (2003) and 

cosine similarity Thada (2013). This method is chosen 

because GLoVE can easily achieve two objectives: it 

can build word embeddings in space vectoring and it 

takes into account global statistics instead of local 

ones. 

III.  METHODOLOGY 

The text processing methods and plagiarism 

detection approaches we implemented in our studies 

are described in detail in this section. 
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Pre-processing and NLP techniques:  

a) Tokenization:     The practice of dividing text into 

smaller pieces known as tokens is known as NLP 

tokenization. Words, sentences, or even characters 

can serve as these tokens, based on the level of 

detail needed. A key component of NLP jobs is 

tokenization, which gives computers the ability to 

efficiently comprehend and analyse human 

language. It is useful for machine translation, 

sentiment analysis, and text   classification. To 

address different language peculiarities, techniques 

range from basic whitespace-based tokenization to 

more complex approaches like word embeddings 

and sub word tokenization. 

b) Lowercase: To make the matching more generic, 

replace all uppercase characters with lowercase 

letters. 

c) Stop-word removal: In text preprocessing, stop-

word removal involves filtering out common, non-

informative words like "the," "of," and "and," 

alongside pronouns and articles. These words, 

known as stop words, carry minimal semantic 

value and can distort analysis outcomes if retained. 

By eliminating them, the focus shifts to the 

substantive content of the text, enhancing the 

effectiveness of tasks such as sentiment analysis or 

information retrieval. Techniques utilizing 

predefined lists or statistical methods are employed 

to systematically remove these functional words, 

streamlining subsequent text processing stages. 

d) Punctuation removal: Punctuation marks in titles 

often serve decorative rather than semantic 

purposes. Their removal streamlines text for NLP 

models, focusing on content rather than formatting. 

This pre-processing step ensures cleaner input data, 

enhancing the model's ability to extract meaningful 

insights. By disregarding punctuation, the model 

can better discern linguistic patterns and nuances in 

the text. 

e) Part-of-Speech tagging: Grammar labels such as 

"noun" or "verb" are assigned to each word using 

POS tagging, which facilitates linguistic analysis. 

It helps identify consistent grammatical structures 

even with word substitutions, enriching NLP tasks. 

This tagging facilitates parsing, sentiment analysis, 

and named entity recognition by revealing 

syntactic functions. By labelling words according 

to their roles, POS tagging enhances the 

understanding of text semantics. 

f) Stemming: Stemming is a linguistic normalization 

technique where words are reduced to their base or 

root     forms, facilitating broader analysis. For 

instance, "product," "produce," and "produced" are 

all stemmed to "produc," while "computer" and 

"computers" are both normalized as "computer." 

This process aids in grouping variations of words 

under the same root, simplifying tasks like search 

and classification. Stemming algorithms like Porter 

and Snowball employ rules to truncate words to 

their simplest forms, disregarding suffixes and 

prefixes. Such normalization enhances the 

efficiency and accuracy of natural language 

processing applications. 

g) Lemmatization: Lemmatisation involves 

converting terms into their base forms as found in 

dictionaries to enable generalized comparative 

analysis. For instance, "produced" is normalized to 

"produce." This process ensures consistency in 

representing words, facilitating accurate 

interpretation and analysis in natural language 

processing tasks. 

h) Number replacement: In number replacement, 

numeric values are replaced with placeholder 

symbols to standardize comparison analysis. This 

technique ensures that numerical data doesn't 

overshadow textual semantics in NLP tasks. By 

employing dummy symbols for numbers and 

figures, the focus remains on linguistic patterns and 

meaning extraction. This pre-processing step 

enhances the uniformity and effectiveness of text 

analysis algorithms. 

i) Dependency Parsing: Which words or phrases 

depend on which other words or phrases is 

indicated by the dependency structure. 

Dependency-based parsing is a technique that we 

apply to examine and deduce relationships between 

characters in a phrase, as well as structure and 

semantic dependencies. We utilized the Stanford 

parser to perform syntactic dependency analysis on 

each sentence. 

j) Chunking: To determine the noun phrase, verb 

phrase, and other elements in a sentence, we 

employ shallow parsing. As an example, we extract 

the following information from the parse tree for 

the phrase fragment "a basic concept of Object-

Oriented Programming," which is generalized to 

include only the identities and structures of the 

constituents (shown by the parenthesis):  

(NP (NP (PP (NP))) where the fragment is entirely 

covered by the first noun phrase (NP) constituent, 

consisting of  "A basic concept" is covered by the 

second NP, and A sentence beginning with a 

preposition (PP) that covers "of Object-Oriented 

Programming." The final NP, "Object-Oriented 

Programming," makes up this PP. 

IV.  IMPLEMENTATION 

A built-in library for machine learning tools is 

called Sci-kit-learn. It has statistical modeling and 
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machine learning techniques. The suggested technique 

for text feature extraction makes use of this library. 

For word embedding, or converting textual data into 

an array of integers, the Count Vectorizer is utilized. 

The process of transforming textual data into a vector 

format is now used to compare two text files for 

similarities. The cosine of the angle between the two 

vector representations of text files is calculated using 

cosine similarity. The process yields a score between 0 

and 1, which gives us an idea of how similar the two 

input files are to one another. 

 

The implementation strategy consists of four 

essential steps: 

▪ Input text file: The file is intended to be the 

system's input for detecting plagiarism. Text format 

(with a.txt extension) is required. 

▪ Pre-processing: Here we pre-processed the data 

for better result and apply our algorithms. 

▪ Vectorization of text: Sci-kit's built-in capabilities 

ensure that the words are translated into a vector 

format from the textual input. 

▪ Compute similarity: The fundamental idea of 

Cosine Similarity is used to calculate how similar 

two text files are to one another. When two text 

files are represented as vectors, their similarity is 

calculated using the dot product of both vectors or 

cosƟ (where Ɵ is the angle between the two 

vectors). 

▪ Algorithms: In this state we will try the ML 

classification algorithms for our model. 

  

 
 

Figure 1. The model Diagram 

V. ALGORITHMS 

5.1 Naïve Bayes Algorithm 

Based on the assumption of feature independence, 

the Naïve Bayes algorithm is a probabilistic 

classification method based on Bayes' theorem. In 

many real-world circumstances, Naïve Bayes is 

remarkably effective despite its simplicity, and it is 

commonly employed in text categorization, 

sentiment analysis, spam filtering, and 

recommendation systems.  

a. Bayes theorem: The Bayes Theorem determines 

the likelihood of a hypothesis based on the 

available data. In terms of math, it is stated as:  

(P(E\H) × P(H))/(P(E)) = P (H\E)  

where P(E\H) is the probability of the evidence 

provided that the hypothesis is true, P(H) is the 

probability of the hypothesis being true (prior), 

and P(E) is the probability of the hypothesis 

given the evidence. 

b. Naïve Assumption: Naïve Bayes makes the 

assumption that a feature's existence in a class is 

unrelated to the existence of any other feature. 

This makes calculating probability easier. 

c. Method:  

▪ Training: Using a training dataset, 

determine the prior probabilities and 

conditional probabilities of each feature 

given the class labels. 

  

▪ Prediction: Apply the Bayes theorem to 

determine the posterior probability of each 

class given the features for a new instance. 

For each case, the class swith the highest 

probability is allocated 

 

The reason why we use Naïve Bayes:   

A. Simplicity: Naïve Bayes is simple to 

implement and easily understandable, making 

it suitable for quick prototyping and 

deployment. 

B. Efficiency: To estimate the parameters 

required for classification, a small amount of 

training data is needed. 

C. Fast Prediction: Because of the algorithm's 

computational efficiency, big datasets and 

real-time applications can benefit from it. 

D. Robustness to Irrelevant Features: Because 

Naïve Bayes assumes feature independence, it 

can effectively handle irrelevant features. 

E. Good Performance: Naïve Bayes frequently 

exhibits surprisingly good performance in 

practice, particularly in text classification 

tasks, despite its simplicity and naïve 

assumption. 
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In summary, an easy-to-use yet powerful 

algorithm for classification problems is Naïve 

Bayes, particularly in scenarios with large datasets 

and high-dimensional feature spaces. Numerous 

machine learning applications choose it for their 

efficiency, durability, and simplicity. 

 

5.2  Logistic Regression 

A classification model called logistic regression is 

used to estimate the likelihood of binary outcomes. 

It functions by fitting the data to a logistic curve, 

which uses the logistic function to convert the 

linear combination of input features into 

probabilities. The procedure involves: 

a. Data Preparation: Collect and preprocess 

data, including feature scaling and handling 

missing values. 

b. Model Training: Estimate the parameters of 

the logistic function using techniques like 

maximum likelihood estimation or gradient 

descent. 

c. Model Evaluation: Use metrics such as 

accuracy, precision, recall, and F1-score to 

evaluate the model's performance. 

d. Prediction: Apply the trained model to 

estimate the probability of class membership 

for new data points. 

We use logistic regression because it's simple, 

interpretable, and computationally efficient. It                         

provides probabilistic predictions, allowing for 

uncertainty quantification. Applications for logistic 

regression can be found in a number of industries, 

including marketing (predictive customer 

turnover), banking (credit scoring), and healthcare 

(disease detection). 

5.3 LSTM 

Long Short-Term Memory (LSTM) is a specialized 

recurrent neural network (RNN) architecture 

designed to overcome the vanishing gradient 

problem and capture long-term dependencies in 

sequential data. Here’s a breakdown of how it 

operates: 

a. Memory Cells: LSTMs contain memory cells 

that store information over time. These cells 

have an internal state that can be updated, read, 

or reset based on the input data. 

b. Gates: LSTMs feature three types of gates - 

input gate, forget gate, and output gate. These 

gates manage the flow of information into and 

out of the memory cells, allowing the network 

to selectively remember or forget data. 

c. Input Processing: The input gate controls the 

flow of new input into the memory cell, 

deciding which information is relevant to store. 

d. Forget Mechanism: The forget gate determines 

which information from the previous state 

should be discarded, based on the current input 

and past memory. 

e. Output Control: The output gate manages the 

output from the memory cell, deciding which 

information should be passed to the next time 

step or the output layer. 

f. Training Procedure: LSTMs are trained using 

backpropagation through time (BPTT), which 

involves computing gradients and updating 

network parameters. This enables the network 

to learn and capture long-term dependencies in 

sequential data. 

 

The reason why we use LSTM:   

A. Long-Term Dependencies: LSTMs can learn 

and remember long-term dependencies in 

sequential data, making them ideal for tasks 

like natural language processing, time series 

prediction, and speech recognition. 

B. Vanishing Gradient: LSTMs address the 

vanishing gradient problem that affects 

traditional RNNs, allowing for more effective 

training and better performance on tasks with 

long sequences. 

C. Flexibility: LSTMs can be applied to both 

classification and regression tasks and can 

handle input sequences of variable lengths. 

D. State-of-the-Art Performance: LSTMs have 

shown state-of-the-art performance in various 

sequential data tasks, making them a popular 

choice in machine learning and deep learning 

research. 

In summary, LSTM networks are a powerful and 

flexible architecture for modelling sequential data. 

They excel at capturing long-term dependencies and 

are widely used in applications where understanding 

temporal patterns is crucial. 

 

5.4 Support Vector Machine (SVM) 

    Support Vector Machine (SVM) with the Support 

Vector Classifier (SVC) algorithm is a powerful 

supervised machine learning model used for 

classification tasks. Here's how it works: 

a. Data Representation: Support Vector Machines 

(SVM) operate by using vectors to represent data 

points in a high-dimensional space, where each 

feature is associated with a dimension.  

b. Maximizing Margin: SVC looks for the 

hyperplane in the feature space that maximizes the 
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margin between classes while also effectively 

separating them. The hyperplane is selected so as 

to maximize the support vectors—the distance 

between the closest data points from each class. 

c. Kernel Trick: By utilizing a kernel trick, SVM can 

effectively tackle non-linear classification issues. 

In order to do this, the input features must be 

transformed into a higher-dimensional space where 

the data can be separated linearly. Sigmoid, 

polynomial, linear, and radial basis function (RBF) 

are examples of common kernel functions.  

d. Training Procedure: SVC solves a convex 

optimization problem to determine the ideal 

hyperplane. It determines the hyperplane 

parameters that maximize margin and reduce 

classification errors. 

 

The reason why we use SVM:   

A. Effective in High-Dimensional Spaces: 

Support Vector Machines (SVM) function 

effectively even when there are more features 

than samples. 

B. Robustness to Overfitting: SVM can handle 

noisy data because of its regularization 

parameters, which aid in preventing 

overfitting. 

C. Versatility: SVM supports various kernel 

functions, allowing it to handle linear and 

non-linear classification tasks. 

D. Global Optimality: SVM finds the globally 

optimal solution, making it less sensitive to 

local optima compared to other algorithms 

like neural networks. 

 

In general, SVM with SVC is frequently utilized 

because of its higher performance and applicability in 

a variety of fields, including finance, bioinformatics, 

image classification, and text classification. 

 

5.5 XGBoost 

XGBoost (Extreme Gradient Boosting) is a highly 

regarded machine learning algorithm frequently used 

for both classification and regression tasks. Here's an 

overview of its key features and functionalities: 

a. Boosting: XGBoost leverages ensemble learning 

by sequentially combining multiple weak learners, 

typically decision trees, to form a stronger model. 

Each new model aims to correct the errors of the 

preceding ones. 

b. Gradient Boosting: The algorithm uses gradient 

boosting, which optimizes a loss function by 

adding models that minimize this loss through 

gradient descent, thereby reducing the overall error. 

c. Regularization: To prevent overfitting, XGBoost 

incorporates regularization techniques. It includes 

parameters that control the complexity of 

individual trees and the model as a whole. 

d. Handling Missing Values: XGBoost is equipped 

with built-in mechanisms to handle missing values 

in the dataset, automatically learning how to 

address them during the training process. 

e. Parallel Processing: Designed for efficiency and 

scalability, XGBoost supports parallel processing, 

allowing it to utilize multiple CPU cores during 

training. 

 

The reason why we use XGBoost:  

A. High Performance: XGBoost is renowned 

for its superior performance and accuracy, 

frequently excelling in machine learning 

competitions and practical applications. 

B. Flexibility: It supports a variety of objective 

functions and evaluation metrics, making it 

versatile for different problem types. 

C. Feature Importance: XGBoost provides 

feature importance scores, aiding users in 

understanding which features most 

significantly impact predictions. 

D. Regularization: The built-in regularization 

mechanisms help guard against overfitting, 

enhancing its robustness in noisy data 

environments. 

E. Wide Adoption: Its effectiveness, scalability, 

and user-friendly nature have led to 

widespread adoption in both industry and 

academia. 

In summary, XGBoost is a powerful and adaptable 

algorithm suitable for a broad range of classification 

and regression tasks. Its capability to handle large 

datasets, optimize complex loss functions, and deliver 

interpretable results makes it a favored tool among 

data scientists and machine learning practitioners. 

 

VI.  RESULT AND ANALYSIS 

The accuracy performances of various 

classification models were evaluated in the context of 

predicting plagiarism. Among the models examined, 

Support Vector Machine (SVM) and XGBoost 

exhibited notably higher accuracies compared to Long 

Short-Term Memory (LSTM), Logistic Regression 

(LR), and Naïve Bayes. 

SVM achieved an impressive accuracy of 91%, 

closely followed by XGBoost with 93%. These results 

highlight the efficacy of SVM and XGBoost in 

capturing complex patterns within the dataset and 

making accurate predictions. 
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Figure 2. Algorithm’s comparison 

 

In contrast, LSTM, LR, and Naïve Bayes 

demonstrated lower accuracies of 52%, 53%, and 57% 

respectively. While LSTM is tailored for sequential 

data, its performance suggests limitations in capturing 

underlying relationships or temporal dependencies 

effectively. LR and Naïve Bayes, though simpler 

models, may have struggled to handle the inherent 

complexity of the data, resulting in suboptimal 

predictive performance. 

 

    Table 1. Test accuracy of applied algorithms. 

No Algorithm Name Test Accuracy 

1 LSTM 52% 

2 LR (Logistic 

Regression) 53% 

3 Naïve Bayes 57% 

4 SVM 91% 

5 Xgboost 93% 

  

The significant variation in model accuracy 

highlights the significance of choosing a suitable 

categorization strategy according to the particular 

demands of the prediction task. SVM and XGBoost, 

with their higher accuracies, are particularly suitable 

for applications where precision is crucial, while 

LSTM, LR, and Naïve Bayes may find utility in 

scenarios prioritizing simplicity or interpretability 

over predictive performance while predicting 

plagiarism. 

VII. CONCLUSION 

Our aim in this study was to employ NLP methods 

to automatically identify instances of plagiarism 

within texts. The paper outlines how NLP techniques 

can enhance existing plagiarism detection methods 

and suggests avenues for further exploration by 

applying advanced NLP techniques. Our experimental 

findings demonstrate that these NLP methods 

significantly enhance the performance of basic 

detection models. Specifically, the Xgboost feature 

exhibits promising results in boosting overall detection 

accuracy. 

NLP techniques have been shown to be effective in 

improving detection accuracy; nevertheless, a number 

of issues still need to be addressed. These include 

handling synonymy (the disambiguation of words), 

generalizing sentence structures, and multilingual 

detection. We intend to tackle these challenges in our 

future research efforts. 

In conclusion, while more accurate detection 

methodologies are being developed, human judgment 

remains essential for assessing cases of plagiarism. 
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